對于任意定義在R上的函數(shù)f(x),若實數(shù)x0滿足f(x0)=x0,則稱x0是函數(shù)f(x)的一個不動點,若f(x)=x2+x+a有不動點,求實數(shù)a的取值范圍
a≤0
a≤0
分析:不動點實際上就是方程f(x0)=x0的實數(shù)根,二次函數(shù)f(x)=x2+x+a有不動點,是指方程x=x2+x+a有實根.即方程x=x2+x+a無實根,然后根據(jù)根的判別式△≥0解答即可.
解答:解:∵f(x)=x2+x+a有不動點
∴x=x2+x+a有實數(shù)根,
即x2+a=0有實數(shù)根,
∴△=0-4a≥0,
解得:a≤0;
故答案為:a≤0
點評:本題主要考查了二次函數(shù)圖象上點的坐標特征、函數(shù)與方程的綜合運用,解答該題時,借用了一元二次方程的根的判別式與根這一知識點,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

16、對于任意定義在R上的函數(shù)f(x),若存在x0∈R滿足f(x0)=x0,則稱x0是函數(shù)f(x)的一個不動點.若函數(shù)f(x)=x2+ax+1沒有不動點,則實數(shù)a的取值范圍是
(-1,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于任意定義在R上的函數(shù)f(x ),若實數(shù)x0滿足f(x 0)=x 0,則稱x0是函數(shù)f(x )的一個不動點,若函數(shù)f(x )=ax2+(2a-3)x+1恰有一個不動點,則實數(shù)a的取值集合是
{0,1,4}
{0,1,4}

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對于任意定義在R上的函數(shù)f(x ),若實數(shù)x0滿足f(x 0)=x 0,則稱x0是函數(shù)f(x )的一個不動點,若函數(shù)f(x )=ax2+(2a-3)x+1恰有一個不動點,則實數(shù)a的取值集合是______.

查看答案和解析>>

科目:高中數(shù)學 來源:2006-2007學年浙江省寧波市寧海六中高二(下)期末數(shù)學試卷(解析版) 題型:解答題

對于任意定義在R上的函數(shù)f(x),若存在x∈R滿足f(x0)=x0,則稱x0是函數(shù)f(x)的一個不動點.若函數(shù)f(x)=x2+ax+1沒有不動點,則實數(shù)a的取值范圍是______.

查看答案和解析>>

同步練習冊答案