【題目】小萌大學(xué)畢業(yè)后,家里給了她10萬(wàn)元,她想辦一個(gè)“萌萌”加工廠,根據(jù)市場(chǎng)調(diào)研,她得出了一組毛利潤(rùn)(單位:萬(wàn)元)與投入成本(單位:萬(wàn)元)的數(shù)據(jù)如下:
投入成本 | 0.5 | 1 | 2 | 3 | 4 | 5 | 6 |
毛利潤(rùn) | 1.06 | 1.25 | 2 | 3.25 | 5 | 7.25 | 9.98 |
為了預(yù)測(cè)不同投入成本情況下的利潤(rùn),她想在兩個(gè)模型,中選一個(gè)進(jìn)行預(yù)測(cè).
(1)根據(jù)投入成本2萬(wàn)元和4萬(wàn)元的兩組數(shù)據(jù)分別求出兩個(gè)模型的函數(shù)解析式,請(qǐng)你根據(jù)給定數(shù)據(jù)選出一個(gè)較好的函數(shù)模型進(jìn)行預(yù)測(cè)(不必說(shuō)明理由),并預(yù)測(cè)她投入8萬(wàn)元時(shí)的毛利潤(rùn);
(2)若小萌準(zhǔn)備最少投入2萬(wàn)元開(kāi)辦加工廠,請(qǐng)預(yù)測(cè)加工廠毛利潤(rùn)率的最大值,并說(shuō)明理由.()
【答案】(1)17萬(wàn)元 (2)
【解析】
(1)利用給出的數(shù)據(jù)把給出的兩個(gè)模型進(jìn)行計(jì)算分別驗(yàn)證,即可找出一個(gè)比較適合的模型;(2)根據(jù)題意寫(xiě)出毛利潤(rùn)率的表達(dá)式,利用函數(shù)的單調(diào)性即可求得函數(shù)的最值.
(1)先求第一個(gè)模型的解析式,
由已知數(shù)據(jù)可得,解得,
∴,
同理可求得
選擇作為較好的模型,
當(dāng)萬(wàn)元時(shí),萬(wàn)元.
(2)由已知,
設(shè),則,,
∵,∴,,
∴,在上是增函數(shù),
當(dāng)萬(wàn)元時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了節(jié)約用水,學(xué)校改革澡堂收費(fèi)制度,實(shí)行計(jì)時(shí)收費(fèi),洗澡時(shí)間在30分鐘以?xún)?nèi)(含30分鐘),每分鐘收費(fèi)0.1元,30分鐘以上超出的部分每分鐘0.2元,請(qǐng)?jiān)O(shè)計(jì)程序,使用基本語(yǔ)句完成澡堂計(jì)費(fèi)工作,要求輸入時(shí)間,輸出費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面內(nèi)動(dòng)點(diǎn)P與點(diǎn)A(﹣3,0)和點(diǎn)B(3,0)的連線(xiàn)的斜率之積為﹣ .
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)P的軌跡且曲線(xiàn)C,過(guò)點(diǎn)(1,0)的直線(xiàn)與曲線(xiàn)C交于M,N兩點(diǎn),記△AMB的面積為S1 , △ANB的面積為S2 , 當(dāng)S1﹣S2取得最大值時(shí),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱錐P﹣ABC中,底面△ABC滿(mǎn)足BA=BC, ,P在面ABC的射影為AC的中點(diǎn),且該三棱錐的體積為 ,當(dāng)其外接球的表面積最小時(shí),P到面ABC的距離為( )
A.2
B.3
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1中,AA1⊥面ABC,AB⊥AC,且AA1=AB=AC,則異面直線(xiàn)AB1與BC1所成角為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為的正方形ADEF與梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=AB=1,點(diǎn)M在線(xiàn)段EC上.
(Ⅰ)證明:平面BDM⊥平面ADEF;
(Ⅱ)判斷點(diǎn)M的位置,使得三棱錐B﹣CDM的體積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的頂點(diǎn), 邊上的中線(xiàn)所在的直線(xiàn)方程為, 邊上的高所在直線(xiàn)的方程為.
()求的頂點(diǎn)、的坐標(biāo).
()若圓經(jīng)過(guò)不同的三點(diǎn)、、,且斜率為的直線(xiàn)與圓相切于點(diǎn),求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,∠BAC=90°,AB=AC=AA1=2,E是BC中點(diǎn).
(Ⅰ)求證:A1B//平面AEC1;
(Ⅱ)在棱AA1上存在一點(diǎn)M,滿(mǎn)足,求平面MEC1與平面ABB1A1所成銳二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)對(duì)應(yīng)f,不是從集合A到集合B的函數(shù)的是( ).
A. A= ,B={-6,-3,1},,f (1)=-3,;
B. A=B={x|x≥-1},f (x)=2x+1;
C. A=B={1,2,3},f (x)=2x-1;
D. A=Z,B={-1,1},n為奇數(shù)時(shí),f (n)=-1,n為偶數(shù)時(shí),f (n)=1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com