【題目】已知幾何體,其中四邊形為直角梯形,四邊形為矩形, ,且, .
(1)試判斷線段上是否存在一點(diǎn),使得平面,請說明理由;
(2)若,求該幾何體的表面積.
【答案】(1)見解析;(2)
【解析】試題分析:(1)取的中點(diǎn),連接, ,根據(jù)三角形中位線定理以及梯形的性質(zhì)可得四邊形為平行四邊形,∴,由線面平行的判定定理可得結(jié)果;(2)先證明平面,又因?yàn)?/span>,∴平面,∴,根據(jù)勾股定理可得,進(jìn)而得, 為直角三角形, 結(jié)合四邊形為直角梯形,四邊形為矩形,進(jìn)而可得結(jié)果.
試題解析:(1)存在線段的中點(diǎn),使得平面,理由如下:
取的中點(diǎn),連接, ,
∵為的中點(diǎn),∴,且,
又∵四邊形為直角梯形, ,且,
∴, ,
∴四邊形為平行四邊形,∴,
∵平面, 平面,
∴平面.
(2)因?yàn)樗倪呅?/span>為直角梯形, ,且, ,
所以,∴.
又,因?yàn)?/span>,所以,
因?yàn)?/span>, , ,所以平面,
又因?yàn)?/span>,∴平面,∴,
所以,進(jìn)而.
所以,
因?yàn)?/span>為直角三角形,所以,
又四邊形也為直角梯形, ,
又, ,
所以該幾何體的表面積為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國的鎢礦資源儲量豐富,在全球已經(jīng)探明的鎢礦產(chǎn)資源儲量中占比近,居全球首位。中國又屬贛州鎢礦資源最為豐富,其素有“世界鎢都”之稱。某科研單位在研發(fā)的鎢合金產(chǎn)品的過程中發(fā)現(xiàn)了一種新合金材料,由大數(shù)據(jù)測得該產(chǎn)品的性能指標(biāo)值與這種新合金材料的含量x(單位:克)的關(guān)系為:當(dāng)時, 是的二次函數(shù);當(dāng)時, .測得部分?jǐn)?shù)據(jù)如表.
x(單位:克) | 0 | 1 | 2 | 9 | … |
y | 0 | 3 | … |
(1)求y關(guān)于x的函數(shù)關(guān)系式y=
(2)求函數(shù)的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,PA⊥底面ABCD,PA=2,∠ABC=90°,,BC=1, ,∠ACD=60°,E為CD的中點(diǎn).
(1)求證:BC∥平面PAE;
(2)求點(diǎn)A到平面PCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題α:函數(shù)的定義域是R;命題β:在R上定義運(yùn)算:xy=x(1-y).不等式(x-a)(x+a)<1對任意實(shí)數(shù)x都成立.
(1)若α、β中有且只有一個真命題,求實(shí)數(shù)a的取值范圍;
(2)若α、β中至少有一個真命題,求實(shí)數(shù)a的取值范圍;
(3)若α、β中至多有一個真命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一個人下半身長(肚臍至足底)與全身長的比近似為(,稱為黃金分割比),堪稱“身材完美”,且比值越接近黃金分割比,身材看起來越好,若某人著裝前測得頭頂至肚臍長度為72,肚臍至足底長度為103,根據(jù)以上數(shù)據(jù),作為形象設(shè)計師的你,對TA的著裝建議是( )
A.身材完美,無需改善B.可以戴一頂合適高度的帽子
C.可以穿一雙合適高度的增高鞋D.同時穿戴同樣高度的增高鞋與帽子
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中非畢業(yè)班學(xué)生人數(shù)分布情況如下表,為了了解這2000個學(xué)生的體重情況,從中隨機(jī)抽取160個學(xué)生并測量其體重數(shù)據(jù),根據(jù)測量數(shù)據(jù)制作了下圖所示的頻率分布直方圖.
(1)為了使抽取的160個樣品更具代表性,宜采取分層抽樣,請你給出一個你認(rèn)為合適的分層抽樣方案,并確定每層應(yīng)抽取的樣品個數(shù);
(2)根據(jù)頻率分布直方圖,求的值,并估計全體非畢業(yè)班學(xué)生中體重在內(nèi)的人數(shù);
(3)已知高一全體學(xué)生的平均體重為,高二全體學(xué)生的平均體重為,試估計全體非畢業(yè)班學(xué)生的平均體重.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面是等邊三角形且垂直于底面,底面是矩形,,是的中點(diǎn).
(1)證明:平面;
(2)點(diǎn)在棱上,且直線與直線所成角的余弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB=2a,F(xiàn)為CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)判斷平面BCE與平面CDE的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,其離心率為,以原點(diǎn)為圓心,橢圓的短軸長為直徑的圓被直線截得的弦長等于.
(1)求橢圓的方程;
(2)設(shè)為橢圓的左頂點(diǎn),過點(diǎn)的直線與橢圓的另一個交點(diǎn)為,與軸相交于點(diǎn),過原點(diǎn)與平行的直線與橢圓相交于兩點(diǎn),問是否存在常數(shù),使恒成立?若存在,求出;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com