【題目】設集合.若的非空子集中奇數(shù)的個數(shù)大于偶數(shù)的個數(shù),則稱是“好的”.試求的所有“好的”子集的個數(shù)(答案寫成最簡結果).

【答案】見解析

【解析】

分奇、偶兩種情況討論.

(1)當為非負整數(shù)),這時中奇元素恰比偶元素多一個.設的任何一個子集,則中有且只有一個子集是“好的”,從而的“好子集”的個數(shù)為.

(2)當為正整數(shù)),中奇元素個數(shù)與偶元素個數(shù)相等.定義為“壞子集”為當且僅當中奇元素個數(shù)小于偶元素的個數(shù),而定義為“中性子集”(包括空集)為當且僅當中奇元素個數(shù)與偶元素個數(shù)相等.

由對稱性知,的“好子集”個數(shù)與“壞子集”的個數(shù)必定相等,所以有

“好子集”個數(shù)

.

其中公式可證明如下:考慮恒等式兩邊中項的系數(shù),由二項式定理知,左邊式中項的系數(shù)是,而右邊式中的系數(shù)是,故得恒等式.

本題答案可統(tǒng)一地寫為

其中是不大于的最大整數(shù)).

注:由恒等式可得組合恒等式:

(注意當時,).這種利用模型來建立和證明組合恒等式的方法(叫做“模型法”)在組合數(shù)學中是很常用的,也很重要,應該熟悉進而掌握它.如果個奇數(shù)和個偶數(shù)組成,那么的“好子集”個數(shù)又為多少呢?請讀者自己考慮之.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),是偶函數(shù).

1)求的值;

2)若函數(shù)的圖象在直線上方,求的取值范圍;

3)若函數(shù),,是否存在實數(shù)使得的最小值為?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)與函數(shù)在點處有公共的切線,設.

1 的值

2)求在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學在研究函數(shù)時,給出下面幾個結論:

①等式恒成立;

②函數(shù)的值域為

③若,則一定;

④對任意的,若函數(shù)恒成立,則當時,

其中正確的結論是____________(寫出所有正確結論的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學從甲、乙兩個班中各選出7名學生參加數(shù)學競賽,他們取得的成績(滿分100分)的莖葉圖如圖所示,其中甲班學生成績的眾數(shù)是83,乙班學生成績的平均數(shù)是86,則的值為( )

A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求平面直角坐標系中格點凸五邊形(即每個頂點的縱橫坐標都是整數(shù)的凸五邊形)的周長的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為的正方體中,,分別是的中點.

)求異面直線所成角的余弦值.

)在棱上是否存在一點,使得二面角的大小為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,點上異于頂點的任意一點,過的直線于另一點,交軸正半軸于點,且有,當點的橫坐標為3時,為正三角形.

1)求的方程;

2)若直線,且相切于點,試問直線是否過定點,若過定點,求出定點坐標;若不過定點,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下四個命題:

,則的逆否命題為真命題

函數(shù)在區(qū)間上為增函數(shù)的充分不必要條件

③若為假命題,則均為假命題

④對于命題,,則為:,

其中真命題的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案