已知點A是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上一點,F(xiàn)為橢圓的一個焦點,且AF⊥x軸,|AF|=焦距,則橢圓的離心率是( 。
A.
1+
5
2
B.
3
-1
C.
2
-1
D.
2
-
1
2
設F為橢圓的右焦點,且AF⊥x軸,所以F(c,0),則
c2
a2
+
y2
b2
=1
,解得y=±
b2
a
,
因為,|AF|=焦距,所以
b2
a
=2c
,即b2=2ac,a2-c2=2ac,
∴e2+2e-1=0,解得e=
2
-1
或e=-
2
-1
(舍去)
故選C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1、F2為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的焦點;M為橢圓上一點,MF1垂直于x軸,且∠F1MF2=60°,則橢圓的離心率為( 。
A.
1
2
B.
2
2
C.
3
3
D.
3
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1,F(xiàn)2為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的兩個焦點,過F2作橢圓的弦AB,若△AF1B的周長為16,橢圓的離心率e=
3
2
,則橢圓的方程為(  )
A.
x2
4
+
y2
3
=1
B.
x2
16
+
y2
3
=1
C.
x2
16
+
y2
4
=1
D.
x2
16
+
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

兩個正數(shù)1、9的等差中項是a,等比中項是b,則曲線
x2
a
+
y2
b
=1
的離心率為( 。
A.
10
5
B.
2
10
5
C.
4
5
D.
10
5
2
10
5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知F1、F2是橢圓C:
x2
4
+y2=1
的兩個焦點,P為橢圓C在第一象限上的一點,且
PF1
PF2
.則P到x=
5
3
3
的距離為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若P為橢圓
x2
9
+
y2
6
=1
上一點,F(xiàn)1和F2為橢圓的兩個焦點,∠F1PF2=60°,則|PF1|•|PF2|的值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)的左、右焦點,橢圓上一點M滿足∠MF1O=
π
3
,N為MF1的中點且ON⊥MF1,則橢圓的離心率為( 。
A.
3
-1
B.
3
2
C.2-
2
D.
2
-1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,A為橢圓
x2
a2
+
y2
b1
=1(a>b>0)上的一個動點,弦AB、AC分別過焦點F1、F2,當AC垂直于x軸時,恰好有AF1:AF2=3:1.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設
AF1
1
F1B
,
AF2
2
F2C

①當A點恰為橢圓短軸的一個端點時,求λ12的值;
②當A點為該橢圓上的一個動點時,試判斷是λ12否為定值?若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線y2=4x的準線與雙曲線-y2=1交于A、B兩點,點F是拋物線的焦點,若△FAB為直角三角形,則該雙曲線的離心率為(  )
A.      B.         C.2      D.

查看答案和解析>>

同步練習冊答案