下列說法:
①命題“存在x0∈R,使2x0≤0”的否定是
“對任意的x ∈R,2x >0”;
②若回歸直線方程為
?
y
=1.5x+45
,x∈{1,5,7,13,19},則
.
y
=58.5;
③設(shè)函數(shù)f(x)=x+ln(x+
1+x2
)
,則對于任意實數(shù)a和b,a+b<0是f(a)+f(b))<0的充要條件;
④“若x∈R,則|x|<1⇒-1<x<1”類比推出“若z∈C,則|z|<1⇒-1<z<1”
其中正確的個數(shù)是(  )
分析:對于①利用命題的否定方法,特稱命題轉(zhuǎn)化為全稱性命題;
對于②,由于
.
x
=9
,∴
.
y
=58.5
;
對于③易知函數(shù)為單調(diào)增函數(shù);
對于④,由實數(shù)推廣到復(fù)數(shù),結(jié)論不成立,故錯誤.
解答:解:對于①利用命題的否定方法,特稱命題轉(zhuǎn)化為全稱性命題,故正確;
對于②,由于
.
x
=9
,∴
.
y
=58.5
,故正確;
對于③易知函數(shù)為單調(diào)增函數(shù),故任意實數(shù)a和b,a+b<0是f(a)+f(b))<0充要條件,故正確;
對于④,由實數(shù)推廣到復(fù)數(shù),結(jié)論不成立,故錯誤.
故選C.
點評:本題主要考查命題真假的判斷,對于每個命題一一判斷是關(guān)鍵,綜合性強,有一定的難度
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
①命題“存在x ∈R,2x ≤0”的否定是“對任意的x ∈R,2x >0”;
②關(guān)于x的不等式a<sin2x+
2
sin2x
恒成立,則a的取值范圍是a<3;
③函數(shù)f(x)=alog2|x|+x+b為奇函數(shù)的充要條件是a+b=0;
其中正確的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法:
①命題“存在x ∈R,2x ≤0”的否定是“對任意的x ∈R,2x >0”;
②關(guān)于x的不等式a<sin2x+
2
sin2x
恒成立,則a的取值范圍是a<3;
③函數(shù)f(x)=alog2|x|+x+b為奇函數(shù)的充要條件是a+b=0;
其中正確的個數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江西省撫州市臨川一中高考數(shù)學(xué)沖刺試卷(文科)(解析版) 題型:選擇題

下列說法:
①命題“存在”的否定是“對任意的”;
②關(guān)于x的不等式恒成立,則a的取值范圍是a<3;
③函數(shù)f(x)=alog2|x|+x+b為奇函數(shù)的充要條件是a+b=0;
其中正確的個數(shù)是( )
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省高考數(shù)學(xué)仿真押題卷09(理科)(解析版) 題型:選擇題

下列說法:
①命題“存在x∈R,使”的否定是
“對任意的”;
②若回歸直線方程為,x∈{1,5,7,13,19},則=58.5;
③設(shè)函數(shù),則對于任意實數(shù)a和b,a+b<0是f(a)+f(b))<0的充要條件;
④“若x∈R,則|x|<1⇒-1<x<1”類比推出“若z∈C,則|z|<1⇒-1<z<1”
其中正確的個數(shù)是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案