【題目】已知定義域為R的函數(shù)fx)=是奇函數(shù).

(1)求b的值,判斷并用定義法證明fx)在R上的單調(diào)性;

(2)解不等式f(2x+1)+fx)<0.

【答案】(1)見解析(2)(-∞,-).

【解析】

(1)由f(0)=0列式求得b,可得函數(shù)解析式,再由函數(shù)單調(diào)性的定義證明函數(shù)f(x)在R上為增函數(shù);(2)由函數(shù)是奇函數(shù)把不等式f(2x+1)+f(x)<0變形為f(2x+1)<-f(x)=f(-x),再由單調(diào)性轉(zhuǎn)化為關于x的一元一次不等式求解.

(1)f(x)是定義在R上的奇函數(shù),∴f(0)=,得b=-1.

f(x)=

函數(shù)f(x)在R上為增函數(shù).

證明如下:設,(-∞,+∞),且,

f()-f()=

==

>0,>0,

,>0,

f()-f()=>0,即f()>f(),

∴函數(shù)f(x)在R上為增函數(shù);

(2)∵函數(shù)f(x)在R上的奇函數(shù),

f(2x+1)+f(x)<0f(2x+1)<-f(x)=f(-x).

由(1)知,函數(shù)f(x)在R上為增函數(shù),

2x+1<-x,即x<-

∴不等式f(2x+1)+f(x)<0的解集為(-∞,-).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ax2﹣a﹣lnx,其中a∈R.
(1)討論f(x)的單調(diào)性;
(2)確定a的所有可能取值,使得f(x)> ﹣e1x在區(qū)間(1,+∞)內(nèi)恒成立(e=2.718…為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中,正確的序號是_________.

的圖象與的圖象關于軸對稱;

,則的值為1;

, 則 ;

把函數(shù)的圖象向左平移個單位長度后,所得圖象的一條對稱軸方程為;

在鈍角中,,則;

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=sinxcosx+cos2x-

(Ⅰ)求函數(shù)fx)的最小正周期及單調(diào)遞增區(qū)間;

(Ⅱ)將函數(shù)fx)圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)gx)的圖象.若關于x的方程gx)-k=0,在區(qū)間[0,]上有實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表是高三某位文科生連續(xù)5次月考的歷史、政治的成績,結(jié)果統(tǒng)計如下:

月份

9

10

11

12

1

歷史(x分)

79

81

83

85

87

政治(y分)

77

79

79

82

83


(1)求該生5次月考歷史成績的平均分和政治成績的方差
(2)一般來說,學生的歷史成績與政治成績有較強的線性相關,根據(jù)上表提供的數(shù)據(jù),求兩個變量x、y的線性回歸方程 = x+
(附: = = , =y﹣ x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我校對高二600名學生進行了一次知識測試,并從中抽取了部分學生的成績(滿分100)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.

 

 數(shù)

 

[50,60)

2

0.04

[60,70)

8

0.16

[70,80)

10

 

[80,90)

 

 

[90,100]

14

0.28

 

 

1.00

(1)填寫頻率分布表中的空格,補全頻率分布直方圖,并標出每個小矩形對應的縱軸數(shù)據(jù);

(2)請你估算該年級學生成績的中位數(shù);

(3)如果用分層抽樣的方法從樣本分數(shù)在[60,70)[80,90)的人中共抽取6,再從6人中選2,2人分數(shù)都在[80,90)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“輾轉(zhuǎn)相除法”的算法思路如右圖所示.記R(a\b)為a除以b所得的余數(shù)(a,b∈N*),執(zhí)行程序框圖,若輸入a,b分別為243,45,則輸出b的值為(

A.0
B.1
C.9
D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=4sinxsin(x+ )﹣1(x∈R).
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[0, ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)= 在區(qū)間(﹣∞,2)上為單調(diào)遞增函數(shù),則實數(shù)a的取值范圍是(
A.[0,+∞)
B.(0,e]
C.(﹣∞,﹣1]
D.(﹣∞,﹣e)

查看答案和解析>>

同步練習冊答案