【題目】已知數(shù)列{an}的前n項(xiàng)和 ,數(shù)列{bn}的前n項(xiàng)和為Bn .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè) ,求數(shù)列{cn}的前n項(xiàng)和Cn;
(3)證明: .
【答案】
(1)解:當(dāng)n≥2時(shí), , ,
兩式相減:an=An﹣An﹣1=2n﹣1;
當(dāng)n=1時(shí),a1=A1=1,也適合an=2n﹣1,
故數(shù)列{an}的通項(xiàng)公式為an=2n﹣1
(2)解:由題意知: ,Cn=c1+c2+…+cn,
, ,
兩式相減可得: ,
即 , ,
(3)解: ,顯然 ,
即bn>2,Bn=b1+b2+…+bn>2n
另一方面, ,
即 , , , ,
即:2n<Bn<2n+2
【解析】(1)當(dāng)n≥2時(shí),利用an=An﹣An﹣1可得an=2n﹣1,再驗(yàn)證n=1的情況,即可求得數(shù)列{an}的通項(xiàng)公式;(2)由題意知: ,利用錯(cuò)位相減法即可求得數(shù)列{cn}的前n項(xiàng)和Cn;(3)利用基本不等式可得 > ,可得Bn=b1+b2+…+bn>2n;再由bn= ,累加可 , 于是可證明: .
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的通項(xiàng)公式,需要了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an},{bn}滿足2Sn=(an+2)bn , 其中Sn是數(shù)列{an}的前n項(xiàng)和.
(1)若數(shù)列{an}是首項(xiàng)為 ,公比為﹣ 的等比數(shù)列,求數(shù)列{bn}的通項(xiàng)公式;
(2)若bn=n,a2=3,求證:數(shù)列{an}滿足an+an+2=2an+1 , 并寫(xiě)出數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,設(shè)cn= , 求證:數(shù)列{cn}中的任意一項(xiàng)總可以表示成該數(shù)列其他兩項(xiàng)之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an},a1=a(a∈R),an+1= (n∈N*).
(1)若數(shù)列{an}從第二項(xiàng)起每一項(xiàng)都大于1,求實(shí)數(shù)a的取值范圍;
(2)若a=﹣3,記Sn是數(shù)列{an}的前n項(xiàng)和,證明:Sn<n+ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2cos( ﹣x)cos(x+ )+ . (Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0, ]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,D在AB上,AD:DB=1:2,E為AC中點(diǎn),CD、BE相交于點(diǎn)P,連結(jié)AP.設(shè) =x +y (x,y∈R),則x,y的值分別為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)= ,若函數(shù)f(x)有四個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,﹣e)
B.(﹣∞,﹣ )
C.(﹣∞,﹣ )
D.(﹣∞,﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ﹣axlnx(a∈R)在x=1處的切線方程為y=bx+1+ (b∈R).
(1)求a,b的值;
(2)證明:f(x)< .
(3)若正實(shí)數(shù)m,n滿足mn=1,證明: + <2(m+n).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次購(gòu)物抽獎(jiǎng)活動(dòng)中,假設(shè)某10張券中有一等獎(jiǎng)券1張,可獲價(jià)值50元的獎(jiǎng)品;有二等獎(jiǎng)券3張,每張可獲價(jià)值10元的獎(jiǎng)品;其余6張沒(méi)有獎(jiǎng),某顧客從此10張券中任抽2張,求:
(Ⅰ)該顧客中獎(jiǎng)的概率;
(Ⅱ)該顧客獲得的獎(jiǎng)品總價(jià)值ξ(元)的概率分布列和期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos(2x﹣ )+2cos2x,將函數(shù)y=f(x)的圖象向右平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)圖象的一個(gè)對(duì)稱中心是( )
A.(﹣ ,1)
B.(﹣ ,1)
C.( ,1)
D.( ,0)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com