(本題滿(mǎn)分12分)已知橢圓,過(guò)中心O作互相垂直的線段OA、OB與橢圓交于A、B, 求:

(1)的值

(2)判定直線AB與圓的位置關(guān)系

(文科)(3)求面積的最小值

(理科)(3)求面積的最大值

 

【答案】

(1)(2)相交(文科)(3)(理科)(3)

【解析】(1)設(shè)線段OA所在的直線方程為,則線段OB所在的直線方程為,分別與橢圓方程聯(lián)立得A、B兩點(diǎn)的坐標(biāo),代入兩點(diǎn)間距離公式可證出結(jié)論;(2)根據(jù)(1)中A、B兩點(diǎn)的坐標(biāo)寫(xiě)出直線AB的方程,要考慮斜率是否存在,求出原點(diǎn)到直線AB的距離與2比較可得結(jié)論;

(3)由(2)得原點(diǎn)到直線AB的距離,再求出A、B兩點(diǎn)間的距離,用表示面積,構(gòu)造函數(shù)求出最值。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

( 本題滿(mǎn)分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:安徽省合肥一中、六中、一六八中學(xué)2010-2011學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)(理 題型:解答題

(本題滿(mǎn)分12分)已知△的三個(gè)內(nèi)角、所對(duì)的邊分別為、、.,且.(1)求的大小;(2)若.求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題

(本題滿(mǎn)分12分)已知各項(xiàng)均為正數(shù)的數(shù)列
的等比中項(xiàng)。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為T(mén)n,求Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省揭陽(yáng)市高三調(diào)研檢測(cè)數(shù)學(xué)理卷 題型:解答題

(本題滿(mǎn)分12分)

已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,是它的左,右焦點(diǎn).

(1)若,且,求的坐標(biāo);

(2)在(1)的條件下,過(guò)動(dòng)點(diǎn)作以為圓心、以1為半徑的圓的切線是切點(diǎn)),且使,求動(dòng)點(diǎn)的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年遼寧省高二上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題

(本題滿(mǎn)分12分)已知橢圓的長(zhǎng)軸,短軸端點(diǎn)分別是A,B,從橢圓上一點(diǎn)M向x軸作垂線,恰好通過(guò)橢圓的左焦點(diǎn),向量是共線向量

(1)求橢圓的離心率

(2)設(shè)Q是橢圓上任意一點(diǎn),分別是左右焦點(diǎn),求的取值范圍

 

查看答案和解析>>

同步練習(xí)冊(cè)答案