(本題滿分9分)已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8e/0/khzqd.png" style="vertical-align:middle;" />,
(1)求;
(2)當(dāng)時(shí),求函數(shù)的最大值。
(1);(2)。
解析試題分析:(1)函數(shù)有意義,故:
解得:……4分
(2),令,
可得:,討論對稱軸可得:……9分
考點(diǎn):本題考查函數(shù)的定義域;函數(shù)最值的求法;指數(shù)函數(shù)的單調(diào)性;二次函數(shù)在閉區(qū)間上的最值問題。
點(diǎn)評:影響二次函數(shù)在閉區(qū)間上的最值主要有三個(gè)因素:拋物線的開口方向、對稱軸和區(qū)間的位置。就學(xué)生而言,感到困難的主要是這兩類問題:一是動(dòng)軸定區(qū)間,二是定軸動(dòng)區(qū)間。這是難點(diǎn),也是重點(diǎn)。因此我們在平常的學(xué)習(xí)中就要練習(xí)到位。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/67/8/1dyvw4.png" style="vertical-align:middle;" />,且.
設(shè)點(diǎn)是函數(shù)圖像上的任意一點(diǎn),過點(diǎn)分別作直線和軸的垂線,垂足分別為.
(1)寫出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)問:是否為定值?若是,則求出該定值,若不是,則說明理由;(7分)
(3)設(shè)為坐標(biāo)原點(diǎn),求四邊形面積的最小值.(7分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)
(1)求時(shí)函數(shù)的解析式
(2)用定義證明函數(shù)在上是單調(diào)遞增
(3)寫出函數(shù)的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)已知函數(shù)(其中為常數(shù),)為偶函數(shù).
(1) 求的值;
(2) 用定義證明函數(shù)在上是單調(diào)減函數(shù);
(3) 如果,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)已知函數(shù),.
(1)用定義證明:不論為何實(shí)數(shù)在上為增函數(shù);
(2)若為奇函數(shù),求的值;
(3)在(2)的條件下,求在區(qū)間[1,5]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知f (x)=.
(1)求函數(shù)f (x)的值域.
(2)若f (t)=3,求t的值.
(3)用單調(diào)性定義證明在[2,+∞)上單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)某炮兵陣地位于地面A處,兩觀察所分別位于地面點(diǎn)C和D處, 已知CD=6000m,∠ACD=45°,∠ADC=75°, 目標(biāo)出現(xiàn)于地面點(diǎn)B處時(shí),測得∠BCD=30°,∠BDC=15°(如圖),求炮兵陣地到目標(biāo)的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com