如圖,函數(shù)的圖象與軸相交于點(diǎn),且該函數(shù)的最小正周期為.
(1)、求和的值;
(2)、已知點(diǎn),點(diǎn)是該函數(shù)圖象上一點(diǎn),
點(diǎn)是的中點(diǎn),當(dāng),時(shí),求的值.
(1)., (2)或.
解析試題分析:(1)將,代入函數(shù)
得,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f7/1/1ycht3.png" style="vertical-align:middle;" />,所以.又因?yàn)樵摵瘮?shù)的最小正周期為,所以,因此.
(2)因?yàn)辄c(diǎn),是的中點(diǎn),,所以點(diǎn)的坐標(biāo)為.又因?yàn)辄c(diǎn)在的圖象上,所以.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b6/b/rieo92.png" style="vertical-align:middle;" />,所以,從而得或.即或.
考點(diǎn):三角函數(shù)圖像與性質(zhì)
點(diǎn)評:解決的關(guān)鍵是對于三角函數(shù)圖像和解析式的關(guān)系的熟練的運(yùn)用,同時(shí)能解三角方程,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
有一枚正方體骰子,六個(gè)面分別寫1、2、3、4、5、6的數(shù)字,規(guī)定“拋擲該枚骰子得到的數(shù)字是拋擲后,面向上的那一個(gè)數(shù)字”.已知和是先后拋擲該枚骰子得到的數(shù)字,函數(shù)
(1)若先拋擲骰子得到的數(shù)字是3,求再次拋擲骰子時(shí),使函數(shù)有零點(diǎn)的概率;
(2)求函數(shù)在區(qū)間(-3,+∞)上是增函數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=,g(x)=2|x|+a.
(1)當(dāng)a=0時(shí),解不等式f(x)≥g(x);
(2)若存在x∈ R,使得f(x)≥g(x)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知指數(shù)函數(shù)滿足:g(2)=4,定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/92/a/jelki1.png" style="vertical-align:middle;" />的函數(shù)
是奇函數(shù)。
(1)確定的解析式;(2)求m,n的值;
(3)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)證明:對于一切的實(shí)數(shù)x都有f(x)x;
(2)若函數(shù)存在兩個(gè)零點(diǎn),求a的取值范圍
(3)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),設(shè)
(1)求的單調(diào)區(qū)間;
(2)若以圖象上任意一點(diǎn)為切點(diǎn)的切線的斜率 恒成立,求實(shí)數(shù)的最小值;
(3)是否存在實(shí)數(shù),使得函數(shù)的圖象與的圖象恰好有四個(gè)不同的交點(diǎn)?若存在,求出的取值范圍,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=(1+x)2-4a lnx(a∈N﹡).
(Ⅰ)若函數(shù)f(x)在(1,+∞)上是增函數(shù),求a的值;
(Ⅱ)在(Ⅰ)的條件下,若關(guān)于x的方程f(x)=x2-x+b在區(qū)間[1,e]上恰有一個(gè)實(shí)根,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com