【題目】設(shè)函數(shù)(a,bR)的導(dǎo)函數(shù)為,已知,是的兩個(gè)不同的零點(diǎn).
(1)證明:;
(2)當(dāng)b=0時(shí),若對(duì)任意x>0,不等式恒成立,求a的取值范圍;
(3)求關(guān)于x的方程的實(shí)根的個(gè)數(shù).
【答案】(1)見(jiàn)解析;(2);(3)1個(gè).
【解析】
(1)求函數(shù)的導(dǎo)數(shù),利用△=4a2﹣12b>0,得證;
(2)分離參數(shù)a,所以a≥﹣x對(duì)任意x>0恒成立,令新函數(shù)設(shè)g(x)=﹣x求最值即可,或采用x3+ax2﹣xlnx≥0時(shí)求左側(cè)最值亦可.
(3)轉(zhuǎn)化函數(shù)求零點(diǎn)個(gè)數(shù)可得結(jié)論.
(1)函數(shù)f(x)=x3+ax2+bx(a,b∈R)的導(dǎo)函數(shù)為f′(x)=3x2+2ax+b.
已知x1,x2是f'(x)的兩個(gè)不同的零點(diǎn),設(shè)x1<x2,
所以△=4a2﹣12b>0,所以:a2>3b得證;
(2)當(dāng)b=0時(shí),對(duì)任意x>0,f(x)≥xlnx恒成立,
所以x3+ax2≥xlnx,即x3+ax2﹣xlnx≥0,x2+ax﹣lnx≥0對(duì)任意x>0恒成立,
所以a≥﹣x對(duì)任意x>0恒成立,
設(shè)g(x)=﹣x,則 ,
令h(x)=1﹣1nx﹣x2,則h(x)=﹣﹣2x<0,
所以h(x)在(0,+∞)上單調(diào)遞減,注意到h(1)=0,
當(dāng)x∈(0,1)時(shí),h(x)>0,g(x)>0,所以g(x)在(0,1)上單調(diào)遞增,
當(dāng)x∈(1,+∞)時(shí),H(x)<0,g(x)<0,所以g(x)在(1,+∞)上單調(diào)遞減,
所以,當(dāng)x=1時(shí),g(x)有最大值g(1)=﹣1,
所以a的取值范圍為[﹣1,+∞);
(3)由題意設(shè)F(x)=f(x)﹣f(x1)﹣,
則原問(wèn)題轉(zhuǎn)化為求函數(shù)F(x)的零點(diǎn)的個(gè)數(shù),
因?yàn)閷?dǎo)函數(shù)為f(x)=3x2+2ax+b,已知x1,x2是f'(x)的兩個(gè)不同的零點(diǎn),
所以:,所以:
,
所以F(x)在(0,+∞)上單調(diào)遞增,注意到F(x1)=0,所以F(x)在(0,+∞)上存在唯一零點(diǎn)x1,
∴關(guān)于x的方程有1個(gè)實(shí)根,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某商品每件的生產(chǎn)成本(元)與銷(xiāo)售價(jià)格(元)具有線(xiàn)性相關(guān)關(guān)系,對(duì)應(yīng)數(shù)據(jù)如表所示:
(元) | 5 | 6 | 7 | 8 |
(元) | 15 | 17 | 21 | 27 |
(1)求出關(guān)于的線(xiàn)性回歸方程;
(2)若該商品的月銷(xiāo)售量(千件)與生產(chǎn)成本(元)的關(guān)系為,,根據(jù)(1)中求出的線(xiàn)性回歸方程,預(yù)測(cè)當(dāng)為何值時(shí),該商品的月銷(xiāo)售額最大.
附:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,是長(zhǎng)軸的一個(gè)端點(diǎn),弦過(guò)橢圓的中心,點(diǎn)在第一象限,且,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)、為橢圓上不重合的兩點(diǎn)且異于、,若的平分線(xiàn)總是垂直于軸,問(wèn)是否存在實(shí)數(shù),使得?若不存在,請(qǐng)說(shuō)明理由;若存在,求取得最大值時(shí)的的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn):的焦點(diǎn)為,直線(xiàn)與拋物線(xiàn)交于,兩點(diǎn),是坐標(biāo)原點(diǎn).
(1)若直線(xiàn)過(guò)點(diǎn)且,求直線(xiàn)的方程;
(2)已知點(diǎn),若直線(xiàn)不與坐標(biāo)軸垂直,且,證明:直線(xiàn)過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.
(1)求C的方程;
(2)設(shè)直線(xiàn)l不經(jīng)過(guò)P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線(xiàn)P2A與直線(xiàn)P2B的斜率的和為–1,證明:l過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知F是拋物線(xiàn)C:的焦點(diǎn),過(guò)E(﹣l,0)的直線(xiàn)與拋物線(xiàn)分別交于A,B兩點(diǎn)(點(diǎn)A,B在x軸的上方).
(1)設(shè)直線(xiàn)AF,BF的斜率分別為,,證明:;
(2)若ABF的面積為4,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省確定從2021年開(kāi)始,高考采用“”的模式,取消文理分科,即“3”包括語(yǔ)文、數(shù)學(xué)、英語(yǔ),為必考科目:“1”表示從物理、歷史中任選一門(mén);“2”則是從生物、化學(xué)、地理、政治中選擇兩門(mén),共計(jì)六門(mén)考試科目.某高中從高一年級(jí)2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);
(2)學(xué)校計(jì)劃在高二上學(xué)期開(kāi)設(shè)選修中的“物理”和“歷史”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生講行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;
性別 | 選擇物理 | 選擇歷史 | 總計(jì) |
男生 | 50 | ||
女生 | 30 | ||
總計(jì) |
(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再?gòu)倪@6名學(xué)生中抽取2人,對(duì)“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.
參考公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某隧道的剖面圖是由半圓及矩形組成,交通部門(mén)擬在隧道頂部安裝通風(fēng)設(shè)備(視作點(diǎn)),為了固定該設(shè)備,計(jì)劃除從隧道最高點(diǎn)處使用鋼管垂直向下吊裝以外,再在兩側(cè)自兩點(diǎn)分別使用鋼管支撐.已知道路寬,設(shè)備要求安裝在半圓內(nèi)部,所使用的鋼管總長(zhǎng)度為.
(1)①設(shè),將表示為關(guān)于的函數(shù);
②設(shè),將表示為關(guān)于的函數(shù);
(2)請(qǐng)選用(1)中的一個(gè)函數(shù)關(guān)系式,說(shuō)明如何設(shè)計(jì),所用的鋼管材料最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的一個(gè)頂點(diǎn)為拋物線(xiàn)的頂點(diǎn), , 兩點(diǎn)都在拋物線(xiàn)上,且.
(1)求證:直線(xiàn)必過(guò)一定點(diǎn);
(2)求證: 面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com