已知空間四邊形ABCD中,AB=CD=3,E、F分別是BC、AD上的點(diǎn),并且BE∶EC=AF∶FD=1∶2,EF=,求AB和CD所成角的大小.

解析:如圖,連結(jié)BD,在BD上取點(diǎn)G,

使BG∶GD=1∶2,連結(jié)EG、FG、EF.

△BCD中,

,

∴EG∥CD.同理,FG∥AB.

∴EG和FG所成的銳角(或直角)就是異面直線AB和CD所成的角.

△BCD中,

∵EG∥CD,CD=3,EG∶CD=1∶2,

∴EG=1.

△ABD中,

∵FG∥AB,AB=3,FG∶AB=2∶3,

∴FG=2.

在△EFG中,EG=1,FG=2,EF=,

由余弦定理,得

cos∠EGF=.

    ∴∠EGF=120°,即EG和FG所成的銳角為60°.

∴AB與CD所成的角為60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知空間四邊形ABCD中,BC=AC,AD=BD,E是AB的中點(diǎn).
求證:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G為△ADC的重心,試在線段AE上確定一點(diǎn)F,使得GF∥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知空間四邊形ABCD中,BC=AC,AD=BD,E是AB的中點(diǎn).
求證:(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知空間四邊形ABCD中,BC=AC,AD=BD,E是AB的中點(diǎn),求證:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G為△ADC的重心,試在線段AE上確定一點(diǎn)F,使得GF∥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省高三12月月考文科數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

如圖,已知空間四邊形ABCD中,BC=AC, AD=BD,E是AB的中點(diǎn),

求證:

AB⊥平面CDE;

平面CDE⊥平面ABC;

若G為△ADC的重心,試在線段AB上確定一點(diǎn)F,使得GF∥平面CDE.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知空間四邊形ABCD中,BC=AC,AD=BD,E是AB的中點(diǎn).
求證:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G為△ADC的重心,試在線段AE上確定一點(diǎn)F,使得GF平面CDE.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案