【題目】如圖,為矩形的邊上一點,且,將沿折起到,使得.
(1)證明:平面平面;
(2)若,求平面與平面所成的銳二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)取,的中點,,連接,,,則,由題意可知,,,從而證明平面,即根據(jù)線面垂直的判定定理證明平面,再利用線面垂直的性質(zhì)定理證明面面垂直即可.
(2)以為原點,,,所在直線為,,軸,建立如圖所示的空間直角坐標系.求解平面的法向量,平面的法向量,再根據(jù),計算二面角余弦值,即可.
(1)取,的中點,,連接,,,則
,
,.
又在矩形中
又,平面,平面
平面
平面
又與為梯形的兩腰,必相交,平面,平面
平面,
又平面
平面平面.
(2)∵,
∴.
過點作,交與,則,,
以為坐標原點,,,所在直線為,,軸,建立如圖所示的空間直角坐標系.
則各點坐標為,,,.
設平面的法向量為,則,
,即,,取,則
設平面的法向量為,則,
,即,,取,則,
即平面與平面所成銳二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x-lnx,g(x)=x2-ax.
(1)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值m(t);
(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數(shù)h(x)圖像上任意兩點,且滿足>1,求實數(shù)a的取值范圍;
(3)若x∈(0,1],使f(x)≥成立,求實數(shù)a的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的左、右焦點分別為,,,是上的點,的面積最大值為,直線與交于兩點,且(為坐標原點)
(1)求橢圓的方程;
(2)求證:到直線的距離為定值,并求其定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】超級病菌是一種耐藥性細菌,產(chǎn)生超級細菌的主要原因是用于抵抗細菌侵蝕的藥物越來越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對相應的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因為感染而引起可怕的炎癥,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級細菌,需要檢驗血液是否為陽性,現(xiàn)有n()份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗方式:
(1)逐份檢驗,則需要檢驗n次;
(2)混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗,若檢驗結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為次,假設在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為p().
(1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經(jīng)過2次檢驗就能把陽性樣本全部檢驗出來的概率;
(2)現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.
(i)試運用概率統(tǒng)計的知識,若,試求p關(guān)于k的函數(shù)關(guān)系式;
(ii)若,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求k的最大值.
參考數(shù)據(jù):,,,,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標準.對于高中男體育特長生而言,當數(shù)值大于或等于20.5時,我們說體重較重,當數(shù)值小于20.5時,我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.
(1)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點圖,請根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認為男生的身高對指數(shù)有影響.
身高較矮 | 身高較高 | 合計 | |
體重較輕 | |||
體重較重 | |||
合計 |
(2)①從上述32名男體育特長生中隨機選取8名,其身高和體重的數(shù)據(jù)如表所示:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請完善下列殘差表,并求解釋變量(身高)對于預報變量(體重)變化的貢獻值(保留兩位有效數(shù)字);
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
殘差 | 0.1 | 0.3 | 0.9 |
②通過殘差分析,對于殘差的最大(絕對值)的那組數(shù)據(jù),需要確認在樣本點的采集中是否有人為的錯誤,已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應該為.請重新根據(jù)最最小二乘法的思想與公式,求出男體育特長生的身高與體重的線性回歸方程.
(參考公式)
,,,,.
(參考數(shù)據(jù))
,,,,.
0.10
0.05
0.01
0.005
2.706
3.811
6.635
7.879
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點到定點的距離比到軸的距離多.
(1)求動點的軌跡的方程;
(2)設,是軌跡在上異于原點的兩個不同點,直線和的傾斜角分別為和,當,變化且時,證明:直線恒過定點,并求出該定點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com