精英家教網 > 高中數學 > 題目詳情
選作題,本題包括A、B、C、D四小題,請選定其中兩題,并在相應的答題區(qū)域內作答.若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.(幾何證明選講)
如圖,已知兩圓交于A、B兩點,過點A、B的直線分別與兩圓交于P、Q和M、N.求證:PM∥QN.
B.(矩陣與變換)
已知矩陣A的逆矩陣A-1=,求矩陣A.
C.(極坐標與參數方程)
在平面直角坐標系xOy中,過橢圓在第一象限處的一點P(x,y)分別作x軸、y軸的兩條垂線,垂足分別為M、N,求矩形PMON周長最大值時點P的坐標.
D.(不等式選講)
已知關于x的不等式|x-a|+1-x>0的解集為R,求實數a的取值范圍.

【答案】分析:A:先連接AB,利用圓的性質易得∠ABN和∠APM相等,及∠ABN和∠AQN互補,從而得到∠APM+∠AQN=π,再結合點P,A,Q三點共線,即得.
B:根據已知條件,求出矩陣M,由M•M-1=E,列出關于矩陳M中參數的方程組即可求得M.
C:先設(α為參數),將矩形PMON周長表示成參數的三角函數的形式,利用三角函數的有啥界性即可求出矩形PMON周長取最大值;
D.對x分情況進行討論:若x-1<0,則a∈R;若x-1≥0,即(a-1)[(a+1)-2x]>0對任意的x∈[1,+∞)恒成立,列出關于a的不等關系即可求出實數a的取值范圍.
解答:解:A.連接AB,易得∠ABN=∠APM,∠ABN+∠AQN=π,
所以∠APM+∠AQN=π,
又點P,A,Q三點共線,
故PM∥QN.
B.設,則由AA-1=E得,
解得所以

C.設(α為參數),
則矩形PMON周長的一半為:,
所以,當時,矩形PMON周長取最大值4×2=8,
此時,點P(3,1).
D.證明:若x-1<0,則a∈R;
若x-1≥0,則(x-a)2>(x-1)2對任意的x∈[1,+∞)恒成立,
即(a-1)[(a+1)-2x]>0對任意的x∈[1,+∞)恒成立,
所以對任意的x∈[1,+∞)恒成立,
解得a<1.
點評:本題主要考查圓的有關知識、逆矩陣、解絕對值不等式、橢圓的參數方程的基本方法,考查運算求解的能力.難度不大,做題要仔細.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

選作題,本題包括A、B、C、D四小題,請選定其中兩題,并在相應的答題區(qū)域內作答.若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.(幾何證明選講)
如圖,AB是半圓的直徑,C是AB延長線上一點,CD切半圓于點D,CD=2,DE⊥AB,垂足為E,且E是OB的中點,求BC的長.
B.(矩陣與變換)
已知矩陣
12
2a
的屬于特征值b的一個特征向量為
1
1
,求實數a、b的值.
C.(極坐標與參數方程)
在平面直角坐標系xOy中,已知點A(1,-2)在曲線
x=2pt2
y=2pt
(t為參數,p為正常數),求p的值.
D.(不等式選講)
設a1,a2,a3均為正數,且a1+a2+a3=1,求證:
1
a1
+
1
a2
+
1
a3
≥9

查看答案和解析>>

科目:高中數學 來源: 題型:

選作題,本題包括A、B、C、D四小題,請選定其中兩題,并在相應的答題區(qū)域內作答.若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.(幾何證明選講)
如圖,已知兩圓交于A、B兩點,過點A、B的直線分別與兩圓交于P、Q和M、N.求證:PM∥QN.
B.(矩陣與變換)
已知矩陣A的逆矩陣A-1=
10
02
,求矩陣A.
C.(極坐標與參數方程)
在平面直角坐標系xOy中,過橢圓
x2
12
+
y2
4
=1
在第一象限處的一點P(x,y)分別作x軸、y軸的兩條垂線,垂足分別為M、N,求矩形PMON周長最大值時點P的坐標.
D.(不等式選講)
已知關于x的不等式|x-a|+1-x>0的解集為R,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2010年高考試題(江蘇版)解析版 題型:解答題

 [選做題]本題包括A、B、C、D四小題,請選定其中兩題,并在相應的答題區(qū)域內作答。若多做,則按作答的前兩題評分。解答時應寫出文字說明、證明過程或演算步驟。

A. 選修4-1:幾何證明選講

 

AB是圓O的直徑,D為圓O上一點,過D作圓O的切線交AB延長線于點C,若DA=DC,求證:AB=2BC。

B. 選修4-2:矩陣與變換

 

在平面直角坐標系xOy中,已知點A(0,0),B(-2,0),C(-2,1)。設k為非零實數,矩陣M=,N=,點A、B、C在矩陣MN對應的變換下得到點分別為A1、B1、C1,△A1B1C1的面積是△ABC面積的2倍,求k的值。

C. 選修4-4:坐標系與參數方程

 

在極坐標系中,已知圓ρ=2cosθ與直線3ρcosθ+4ρsinθ+a=0相切,求實數a的值。

 

D. 選修4-5:不等式選講

 

設a、b是非負實數,求證:。

 

[必做題]第22題、第23題,每題10分,共計20分。請在答題卡指定區(qū)域內作答,解答時應寫出文字說明、證明過程或演算步驟。

 

 

查看答案和解析>>

科目:高中數學 來源:2012年江蘇省南通市教研室高考數學全真模擬試卷(一)(解析版) 題型:解答題

選作題,本題包括A、B、C、D四小題,請選定其中兩題,并在相應的答題區(qū)域內作答.若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.(幾何證明選講)
如圖,AB是半圓的直徑,C是AB延長線上一點,CD切半圓于點D,CD=2,DE⊥AB,垂足為E,且E是OB的中點,求BC的長.
B.(矩陣與變換)
已知矩陣的屬于特征值b的一個特征向量為,求實數a、b的值.
C.(極坐標與參數方程)
在平面直角坐標系xOy中,已知點A(1,-2)在曲線(t為參數,p為正常數),求p的值.
D.(不等式選講)
設a1,a2,a3均為正數,且a1+a2+a3=1,求證:

查看答案和解析>>

同步練習冊答案