已知函數(shù).
(Ⅰ) 若函數(shù)處的切線(xiàn)方程為,求實(shí)數(shù)的值.
(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
(Ⅰ) ;
(Ⅱ) 。

試題分析:(Ⅰ) 由
               (2分)
 
函數(shù)處的切線(xiàn)方程為,
所以 ,解得                   (5分)
(Ⅱ)當(dāng)時(shí),不等式恒成立,
所以,,而   (6分)
由(Ⅰ)知
                         (8分)
(1)當(dāng)時(shí),恒成立,所以上遞增,成立                        (9分)
(2)當(dāng)時(shí),由解得
①當(dāng)時(shí),上遞增,在上遞減,
所以,解得;
②當(dāng)時(shí),上遞增,在上遞減,
上遞增,
,
解得;                              (12分)
(3)當(dāng)時(shí),由解得
①當(dāng)時(shí),上遞減,在上遞增,舍去;
②當(dāng)時(shí),上遞增,在上 遞減, 在上遞增,
所以,解得 (14分)
所以實(shí)數(shù)的取值范圍為 (15分)
點(diǎn)評(píng):中檔題,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,是導(dǎo)數(shù)應(yīng)用的基本問(wèn)題,主要依據(jù)“在給定區(qū)間,導(dǎo)函數(shù)值非負(fù),函數(shù)為增函數(shù);導(dǎo)函數(shù)值非正,函數(shù)為減函數(shù)”。確定函數(shù)的極值,遵循“求導(dǎo)數(shù),求駐點(diǎn),研究單調(diào)性,求極值”。不等式恒成立問(wèn)題,往往通過(guò)構(gòu)造函數(shù),研究函數(shù)的最值,使問(wèn)題得到解決。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)(其中).
(1) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(2) 當(dāng)時(shí),函數(shù)上有且只有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是實(shí)數(shù),函數(shù),,分別是的導(dǎo)函數(shù),若在區(qū)間上恒成立,則稱(chēng)在區(qū)間上單調(diào)性一致.
(Ⅰ)設(shè),若函數(shù)在區(qū)間上單調(diào)性一致,求實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè),若函數(shù)在以為端點(diǎn)的開(kāi)區(qū)間上單調(diào)性一致,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),函數(shù)取得極大值,求實(shí)數(shù)的值;
(Ⅱ)已知結(jié)論:若函數(shù)在區(qū)間內(nèi)存在導(dǎo)數(shù),則存在
,使得. 試用這個(gè)結(jié)論證明:若函數(shù)
(其中),則對(duì)任意,都有;
(Ⅲ)已知正數(shù)滿(mǎn)足,求證:對(duì)任意的實(shí)數(shù),若時(shí),都
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(I)證明當(dāng) 
(II)若不等式取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)定義在上的函數(shù)是最小正周期為的偶函數(shù),的導(dǎo)函數(shù).當(dāng)時(shí),;當(dāng)時(shí),.則函數(shù)上的零點(diǎn)個(gè)數(shù)為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù),(是互不相等的常數(shù)),則等于( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)(為非零常數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的最小值; 
(Ⅱ)若恒成立,求的值;
(Ⅲ)對(duì)于增區(qū)間內(nèi)的三個(gè)實(shí)數(shù)(其中),
證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù) .
(Ⅰ)當(dāng)時(shí),求在點(diǎn)處的切線(xiàn)方程;
(Ⅱ)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案