已知函數(shù)的減區(qū)間是(-2,2)
(1)試求m,n的值;
(2)求過點且與曲線相切的切線方程;
(3)過點A(1,t),是否存在與曲線相切的3條切線,若存在,求實數(shù)t的取值范圍;若不存在,請說明理由.

⑴m=1,n="0;" ⑵;⑶存在, .

解析試題分析:(1)由已知函數(shù)單調(diào)減區(qū)間為(-2,2)即為的解集為(-2,2),利用根與系數(shù)的關(guān)系求出m與n的值即可;(2)當A為切點時,利用導(dǎo)數(shù)的幾何意義求出x=1處的切線的斜率,利用點斜式求出切線方程,化成一般式即可,當A不為切點時,設(shè)切點為P(x0),這時切線的斜率是k=,將點A(1,-11)代入得到關(guān)于x0的方程,即可求出切點坐標,最后求出切線方程;(3)存在滿足條件的三條切線.設(shè)點P(x0,)是曲線f(x)=x3-12x的切點,寫出在P點處的切線的方程為y-=(x-x0)將點A(1,t)代入,將t分離出來,根據(jù)有三條切線,所以方程應(yīng)有3個實根,設(shè)g(x)=2x3-3x2+t+12,只要使曲線有3個零點即可.建立不等關(guān)系解之即可.
試題解析:⑴由題意知:的解集為(-2,2),所以,-2和2為方程3mx2+4nx-12=0的根,由韋達定理知,解得:m=1,n=0.
⑵∵,∴,∵
當A為切點時,切線的斜率
∴切線為,即;               
當A不為切點時,設(shè)切點為,這時切線的斜率是
切線方程為,即   
因為過點A(1,-11), 
,
,而為A點,即另一個切點為,

切線方程為 ,即
所以,過點的切線為.
⑶ 存在滿足條件的三條切線.                           
設(shè)點是曲線的切點,
則在P點處的切線的方程為 
因為其過點A(1,t),所以,,   
由于有三條切線,所以方程應(yīng)有3個實根,       
設(shè),只要使曲線有3個零點即可.
設(shè) =0, ∴分別為的極值點,
上單增,
,上單減,
所以,為極大值點,為極小值點.
所以要使曲線與x軸有3個交點,當且僅當,
解得:.
考點:1.導(dǎo)數(shù)研究函數(shù)的單調(diào)性;2.導(dǎo)數(shù)研究曲線上某點切線方程.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=﹣x3+x2+3x+a.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在區(qū)間[﹣3,3]上的最小值為,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)處有極大值.
(Ⅰ)求的值;
(Ⅱ)若過原點有三條直線與曲線相切,求的取值范圍;
(Ⅲ)當時,函數(shù)的圖象在拋物線的下方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)= -ax(a∈R,e為自然對數(shù)的底數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a=1,函數(shù)g(x)=(x-m)f(x)-+x2+x在區(qū)間(0,+)上為增函數(shù),求整數(shù)m 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)).
(1)求的單調(diào)區(qū)間;(4分)
(2)求所有實數(shù),使恒成立.(8分)
(注:為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當時,求曲線在點處的切線方程;
(2)當時,討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),函數(shù).
⑴當時,函數(shù)的圖象與函數(shù)的圖象有公共點,求實數(shù)的最大值;
⑵當時,試判斷函數(shù)的圖象與函數(shù)的圖象的公共點的個數(shù);
⑶函數(shù)的圖象能否恒在函數(shù)的上方?若能,求出的取值范圍;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)若對任意x1∈[0,1],存在x2∈[1,2],使,求實數(shù)a的取值范圍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知函數(shù)f(x)=kx3+3(k-1)x2k2+1(k>0)的單調(diào)減區(qū)間是(0,4),則k的值是____

查看答案和解析>>

同步練習冊答案