(本小題滿分12分)在平面直角坐標系中,已知點,P是動點,且三角形的三邊所在直線的斜率滿足
(Ⅰ)求點P的軌跡的方程;
(Ⅱ)若Q是軌跡上異于點的一個點,且,直線交于點M,試探
究:點M的橫坐標是否為定值?并說明理由.
(1));(2)點M的橫坐標為定值
第一問利用已知的斜率關(guān)系式,設(shè)點的坐標代入即可得到軌跡方程。
第二問中,由由可知直線,則,然后設(shè)出點P,Q的坐標,然后表示一個關(guān)系式,然后利用由三點共線可知,同理得到關(guān)系式,聯(lián)立解得。
解:(Ⅰ)設(shè)點為所求軌跡上的任意一點,則由

,  …………2分
整理得軌跡的方程為),                    …………4分
(Ⅱ)設(shè),
可知直線,則,
,即,  …………6分
三點共線可知,共線,
∴ 
由(Ⅰ)知,故,              …………8分
同理,由共線,
∴ ,即,
由(Ⅰ)知,故,                  …………10分
,代入上式得,
整理得,
,即點M的橫坐標為定值.         ………………………12分
(方法二)
設(shè)
可知直線,則,
,即,                           …………6分
∴直線OP方程為:   ①;                           …………8分
直線QA的斜率為:,              
∴直線QA方程為:,即  ②;……10分
聯(lián)立①②,得,∴點M的橫坐標為定值.   ………………………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:y=(x+1)2與圓M:(x-1)2+()2=r2(r>0)有一個公共點,且在A處兩曲線的切線為同一直線l.
(Ⅰ)求r;
(Ⅱ)設(shè)m、n是異于l且與C及M都相切的兩條直線,m、n的交點為D,求D到l的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

與橢圓有公共焦點,且離心率互為倒數(shù)的雙曲線的方程是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓M的中心在坐標原點D,左、右焦點F1,F(xiàn)2在x軸上,拋物線N的頂點也在原點D,焦點為F2,橢圓M與拋物線N的一個交點為A(3,).

(I)求橢圓M與拋物線N的方程;
(Ⅱ)在拋物線N位于橢圓內(nèi)(不含邊界)的一段曲線上,是否存在點B,使得△AF1B的外接圓圓心在x軸上?若存在,求出B點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

己知F1 F2是橢圓(a>b>0)的兩個焦點,若橢圓上存在一點P使得,則橢圓的離心率e的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)如圖,橢圓的焦點在軸上,左、右頂點分別為,上頂點為,拋物線、分別以為焦點,其頂點均為坐標原點相交于直線上一點.
(Ⅰ)求橢圓及拋物線、的方程;
(Ⅱ)若動直線與直線垂直,且與橢圓交于不同的兩點,已知點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

給定橢圓  ,稱圓心在坐標原點,半徑為的圓是橢圓的“伴隨圓”. 已知橢圓的兩個焦點分別是,橢圓上一動點滿足
(Ⅰ)求橢圓及其“伴隨圓”的方程;
(Ⅱ)過點P作直線,使得直線與橢圓只有一個交點,且截橢圓的“伴隨圓”所得的弦長為.求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)F(1,0),點M在x軸上,點P在y軸上,且
(1)當點P在y軸上運動時,求點N的軌跡C的方程;
(2)設(shè)是曲線C上的點,且成等差數(shù)列,當AD的垂直平分線與x軸交于點E(3,0)時,求點B的坐標。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正四面體P-ABC中,M為ABC內(nèi)(含邊界)一動點,且到三個側(cè)面PAB,PBC,PCA的距離成等差數(shù)列,則點M的軌跡是(  )
A.一條線段B.橢圓的一部分
C.雙曲線的一部分D.拋物線的一部分

查看答案和解析>>

同步練習(xí)冊答案