【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,如表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如表1

年份x

2011

2012

2013

2014

2015

儲蓄存款y(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理,得到表2:

時間代號t

1

2

3

4

5

z

0

1

2

3

5

(1)求z關(guān)于t的線性回歸方程;

(2)通過(1)中的方程,求出y關(guān)于x的回歸方程;

(3)用所求回歸方程預(yù)測到2010年年底,該地儲蓄存款額可達多少?

附:對于線性回歸方程

其中, .

【答案】(1);(2);(3)3.6千億.

【解析】

1)利用最小二乘法求出z關(guān)于t的線性回歸方程;

2)通過,把z關(guān)于t的線性回歸方程化成y關(guān)于x的回歸方程;

3)利用回歸方程代入求值。

解:(1)由表中數(shù)據(jù),計算1+2+3+4+5)=3

0+1+2+3+5)=2.2,

tizi1×0+2×1+3×2+4×3+5×545,

12+22+32+42+5255

所以1.2,

b2.21.2×3=﹣1.4,

所以z關(guān)于t的線性回歸方程為z1.2t1.4

2)把tx2010,zy5代入z1.2t1.4中,得到:

y51.2x2010)﹣1.4

y關(guān)于x的回歸方程是y1.2x2408.4;

3)由(2)知,計算x2010時,y1.2×20102408.43.6,

即預(yù)測到2010年年底,該地儲蓄存款額可達3.6千億.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在空間中,給出下列說法:①平行于同一個平面的兩條直線是平行直線;②垂直于同一條直線的兩個平面是平行平面;③若平面內(nèi)有不共線的三點到平面的距離相等,則;④過平面的一條斜線,有且只有一個平面與平面垂直.其中正確的是(

A. ①③B. ②④C. ①④D. ②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心為的圓,滿足下列條件:圓心位于軸正半軸上,與直線相切且被軸截得的弦長為,圓的面積小于13.

(Ⅰ)求圓的標準方程;

(Ⅱ)設(shè)過點的直線與圓交于不同的兩點,以為鄰邊作平行四邊形.是否存在這樣的直線,使得直線恰好平行?如果存在,求出的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在我國古代數(shù)學名著《九章算術(shù)》中將由四個直角三角形組成的四面體稱為“鱉臑”.已知三棱維中,底面.

(1)從三棱錐中選擇合適的兩條棱填空_________⊥________,則該三棱錐為“鱉臑”;

(2)如圖,已知垂足為,垂足為.

(i)證明:平面⊥平面;

(ii)作出平面與平面的交線,并證明是二面角的平面角.(在圖中體現(xiàn)作圖過程不必寫出畫法)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某社區(qū)居民有無收看“奧運會開幕式”,某記者分別從某社區(qū)60~70歲,40~50歲,20~30歲的三個年齡段中的160人,240人,x人中,采用分層抽樣的方法共抽查了30人進行調(diào)查,若在60~70歲這個年齡段中抽查了8人,那么x(  )

A. 90 B. 120 C. 180 D. 200

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年電子商務(wù)蓬勃發(fā)展,平臺對每次成功交易都有針對商品和快遞是否滿意的評價系統(tǒng).從該評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,網(wǎng)購者對商品的滿意率為0.70,對快遞的滿意率為0.60,商品和快遞都滿意的交易為80

(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有99%認為網(wǎng)購者對商品滿意與對快遞滿意之間有關(guān)系”?

對快遞滿意

對快遞不滿意

合計

對商品滿意

80

對商品不滿意

合計

200

(Ⅱ)若將頻率視為概率,某人在該網(wǎng)購平臺上進行的3次購物中,設(shè)對商品和快遞都滿意的次數(shù)為隨機變量,求的分布列和數(shù)學期望.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著網(wǎng)絡(luò)營銷和電子商務(wù)的興起,人們的購物方式更具多樣化,某調(diào)查機構(gòu)隨機抽取10名購物者進行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實體店.

1)若從10名購物者中隨機抽取2名,其中男、女各一名,求至少1名傾向于選擇實體店的概率;

(2)若從這10名購物者中隨機抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(Ⅰ)求證:BC⊥平面ACFE;
(Ⅱ)點M在線段EF上運動,設(shè)平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)點為坐標原點,橢圓的右頂點為,上頂點為,過點且斜率為的直線與直線相交于點,且.

(1)求橢圓的離心率;

(2)是圓的一條直徑,若橢圓經(jīng)過,兩點,求橢圓的方程.

查看答案和解析>>

同步練習冊答案