已知一個簡單多面體的面數(shù)F>4,求證:它的棱數(shù)E≥8.

證明:∵V+F-E=2,

∴F=2+E-V.

∵F>4,

∴2+E-V>4,且V≥5,

∴E>2+V≥7.

∴E≥8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、已知一個簡單多面體的各個頂點都有三條棱,則頂點數(shù)V與面數(shù)F滿足的關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個簡單多面體的每個頂點處有三條棱,則頂點數(shù)V與面數(shù)F滿足的關(guān)系式是
V=2F-4
V=2F-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個簡單多面體的每個面均為五邊形,且它共有30條棱,則此多面體的面數(shù)F和頂點數(shù)V分別等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個簡單多面體的每個面均為五邊形,且它共有30條棱,則此多面體的面數(shù)F和頂點數(shù)V分別等于(    )

A.F=6,V=26                                  B.F=20,V=12

C.F=12,V=20                                 D.F=8,V=24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個簡單多面體的各個頂點都有三條棱,那么2FV=__________________.

查看答案和解析>>

同步練習(xí)冊答案