在△ABC中,設(shè)命題p:,命題q:△ABC是等邊三角形,那么命題p是命題q的( )
A.充要條件
B.必要不充分條件
C.充分不必要條件
D.即不充分也不必要條件
【答案】分析:先當(dāng)p成立時,利用正弦定理把等式中的邊轉(zhuǎn)化成角的正弦,化簡整理求得A=B=C判斷出△ABC是等邊三角形.推斷出p是q的充分條件;反之利用正弦定理可分別求得=2R,=2R,=2R,三者相等,進(jìn)而可推斷出p是q的必要條件,最后綜合可得答案.
解答:解:,即①;
②,
①-②,得(sinC-sinB)(sinA+sinB+sinC)=0,則sinC=sinA,
∴C=A.同理得C=B,
∴A=B=C,則△ABC是等邊三角形.
當(dāng)A=B=C時,==2R,==2R,==2R
成立,
∴p命題是q命題的充分必要條件.
故選A
點(diǎn)評:本題主要考查了正弦定理的運(yùn)用,充分條件,必要條件和充分必要的條件的判定.考查了學(xué)生分析問題和推理的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,設(shè)命題p:
a
sinB
=
b
sinC
=
c
sinA
;命題q:△ABC是等邊三角形.那么命題p是命題q的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,設(shè)命題p:
a
sinB
=
b
sinC
=
c
sinA
,命題q:△ABC是等邊三角形,那么命題p是命題q的(  )
A、充要條件
B、必要不充分條件
C、充分不必要條件
D、即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,設(shè)命題命題q:△ABC是等邊三角形,那么命題p是命題q的(    )

       A.充分不必要條件         B.必要不充分條件

       C.充分必要條件           D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪復(fù)習(xí)鞏固與練習(xí):解三角形應(yīng)用舉例(解析版) 題型:解答題

在△ABC中,設(shè)命題p:==;命題q:△ABC是等邊三角形.那么命題p是命題q的    條件.

查看答案和解析>>

同步練習(xí)冊答案