定義在上的偶函數(shù)滿足,且在上是減函數(shù),是鈍角三角形的兩個(gè)銳角,則下列結(jié)論正確的是(   )
A.B.
C.D.
D

試題分析:由可知圖象關(guān)于對(duì)稱,又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005214695207.png" style="vertical-align:middle;" />為偶函數(shù)圖象關(guān)于對(duì)稱,可得到為周期函數(shù)且最小正周期為2,結(jié)合在區(qū)間上是減函數(shù),畫出滿足題意的一個(gè)函數(shù)圖象如右圖所示.因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005214883216.png" style="vertical-align:middle;" />是鈍角三角形的兩個(gè)銳角,所以,,所以,
所以
,故選D.
點(diǎn)評(píng):本題主要考查了函數(shù)的奇偶性、單調(diào)性等綜合應(yīng)用,解決的關(guān)鍵一是由f(2-x)=f(x),偶函數(shù)滿足的f(-x)=f(x)可得函數(shù)的周期,關(guān)鍵二是要熟練掌握偶函數(shù)對(duì)稱區(qū)間上的單調(diào)性相反的性質(zhì),關(guān)鍵三是要α,β是鈍角三角形的兩個(gè)銳角可得0°<α+β<90°即0°<α<90°-β.本題是綜合性較好的試題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某車間有50名工人,要完成150件產(chǎn)品的生產(chǎn)任務(wù),每件產(chǎn)品由3個(gè)A 型零件和1個(gè)B 型零件配套組成.每個(gè)工人每小時(shí)能加工5個(gè)A 型零件或者3個(gè)B 型零件,現(xiàn)在把這些工人分成兩組同時(shí)工作(分組后人數(shù)不再進(jìn)行調(diào)整),每組加工同一中型號(hào)的零件.設(shè)加工A 型零件的工人人數(shù)為x名(x∈N*
(1)設(shè)完成A 型零件加工所需時(shí)間為小時(shí),寫出的解析式;
(2)為了在最短時(shí)間內(nèi)完成全部生產(chǎn)任務(wù),x應(yīng)取何值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“孿生函數(shù)”,那么函數(shù)解析式為y=2x2+1,值域?yàn)閧3,9}的“孿生函數(shù)”共有(  )
A.10個(gè)B.9個(gè)
C.8個(gè)D.7個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù)處取得極值.
(Ⅰ)求的值;
(Ⅱ)若當(dāng)恒成立,求的取值范圍;
(Ⅲ)對(duì)任意的是否恒成立?如果成立,給出證明,如果不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一家報(bào)刊推銷員從報(bào)社買進(jìn)報(bào)紙的價(jià)格是每份0.20元,賣出的價(jià)格是每份0.30元,賣不完的還可以以每份0.08元的價(jià)格退回報(bào)社.在一個(gè)月(以30天計(jì)算)有20天每天可賣出400份,其余10天只能賣250份,但每天從報(bào)社買進(jìn)報(bào)紙的份數(shù)都相同,問應(yīng)該從報(bào)社買多少份才能使每月所獲得的利潤(rùn)最大?并計(jì)算每月最多能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義運(yùn)算:,則函數(shù)的值域?yàn)椋?nbsp; )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)=,數(shù)列滿足。(12分)
(1)求數(shù)列的通項(xiàng)公式;
(2)令-+-+…+-
(3)令=,+++┅,若<對(duì)一切都成立,求最小的正整數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)函數(shù),曲線在點(diǎn)處的切線方程
(1)求的解析式,并判斷函數(shù)的圖像是否為中心對(duì)稱圖形?若是,請(qǐng)求其對(duì)稱中心;否則說明理由。
(2)證明:曲線上任一點(diǎn)的切線與直線和直線所圍三角形的面積為定值,并求出此定值.
(3) 將函數(shù)的圖象向左平移一個(gè)單位后與拋物線為非0常數(shù))的圖象有幾個(gè)交點(diǎn)?(說明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
有甲、乙兩種商品,經(jīng)營(yíng)銷售這兩種商品所能獲得的利潤(rùn)依次是(萬元)和(萬元),它們與投入資金(萬元)的關(guān)系有經(jīng)驗(yàn)公式:。今有3萬元資金投入經(jīng)營(yíng)甲、乙兩種商品,為獲得最大利潤(rùn),對(duì)甲、乙兩種商品的資金投入分別應(yīng)為多少?能獲得最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案