對于定義在區(qū)間D上的函數(shù)f(x),若存在閉區(qū)間[a,b]⊆D和常數(shù)c,使得對任意x1∈[a,b],都有f(x1)=c,且對任意x2∈D,當(dāng)x2∉[a,b]時,f(x2)>c恒成立,則稱函數(shù)f(x)為區(qū)間D上的“平底型”函數(shù).
(1)判斷f1(x)=|x-1|+|x-2|和f2(x)=x+|x-2|是否為R上的“平底型”函數(shù)?并說明理由;
(2)若函數(shù)g(x)=mx+
x2+2x+n
是區(qū)間[-2,+∞)上的“平底型”函數(shù),求m和n的值.
分析:(1)對于函數(shù)f1(x)=|x-1|+|x-2|,欲判斷其是否是“平底型”函數(shù),只須什么f1(x)>1是否恒成立,對于函數(shù)f2(x)=x+|x-2|,當(dāng)x∈(-∞,2]時,f2(x)=2;當(dāng)x∈(2,+∞)時,f2(x)=2x-2>2,故可得結(jié)論;
(2)函數(shù)g(x)=mx+
x2+2x+n
是區(qū)間[-2,+∞)上的“平底型”函數(shù),等價于x2+2x+n=m2x2-2cmx+c2對任意的x∈[a,b]成立,利用恒等關(guān)系,可得到關(guān)于m,n,c的方程,解出它們的值,最后通過驗(yàn)證g(x)是區(qū)間[-2,+∞)上的“平底型”函數(shù)即可解決問題.
解答:解:(1)對于函數(shù)f1(x)=|x-1|+|x-2|,當(dāng)x∈[1,2]時,f1(x)=1.
當(dāng)x<1或x>2時,f1(x)>|(x-1)-(x-2)|=1恒成立,故f1(x)是“平底型”函數(shù).
對于函數(shù)f2(x)=x+|x-2|,當(dāng)x∈(-∞,2]時,f2(x)=2;當(dāng)x∈(2,+∞)時,
f2(x)=2x-2>2.
所以不存在閉區(qū)間[a,b],使當(dāng)x∉[a,b]時,f(x)>2恒成立.
故f2(x)不是“平底型”函數(shù);
(2)由“平底型”函數(shù)定義知,存在閉區(qū)間[a,b]⊆[-2,+∞)和常數(shù)c,使得對任意的x∈[a,b],
都有g(shù)(x)=mx+
x2+2x+n
=c,即
x2+2x+n
=c-mx
所以x2+2x+n=(c-mx)2恒成立,即x2+2x+n=m2x2-2cmx+c2對任意的x∈[a,b]成立…(13分)
所以
m2=1
-2cm=2
c2=n
,所以
m=1
c=-1
n=1
m=-1
c=1
n=1
…(14分)
①當(dāng)
m=1
c=-1
n=1
時,g(x)=x+|x+1|.
當(dāng)x∈[-2,-1]時,g(x)=-1,當(dāng)x∈(-1,+∞)時,g(x)=2x+1>-1恒成立.
此時,g(x)是區(qū)間[-2,+∞)上的“平底型”函數(shù)…(16分)
②當(dāng)
m=-1
c=1
n=1
時,g(x)=-x+|x+1|.
當(dāng)x∈[-2,-1]時,g(x)=-2x-1≥1,當(dāng)x∈(-1,+∞)時,g(x)=1.
此時,g(x)不是區(qū)間[-2,+∞)上的“平底型”函數(shù).(12分)
綜上分析,m=1,n=1為所求…(18分)
點(diǎn)評:本題考查新定義,考查函數(shù)恒成立問題,考查函數(shù)的最值,解題的關(guān)鍵是利用恒成立結(jié)論等式,從而可得參數(shù)的值,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于定義在區(qū)間D上的函數(shù)f(x),若存在閉區(qū)間[a,b]⊆D和常數(shù)c,使得對任意x1∈[a,b],都有f(x1)=c,且對任意x2∈D,當(dāng)x2∉[a,b]時,f(x2)>c恒成立,則稱函數(shù)f(x)為區(qū)間D上的“平底型”函數(shù).
(Ⅰ)判斷函數(shù)f1(x)=|x-1|+|x-2|和f2(x)=x+|x-2|是否為R上的“平底型”函數(shù)?并說明理由;
(Ⅱ)設(shè)f(x)是(Ⅰ)中的“平底型”函數(shù),k為非零常數(shù),若不等式|t-k|+|t+k|≥|k|•f(x)對一切t∈R恒成立,求實(shí)數(shù)x的取值范圍;
(Ⅲ)若函數(shù)g(x)=mx+
x2+2x+n
是區(qū)間[-2,+∞)上的“平底型”函數(shù),求m和n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都二模)對于定義在區(qū)間D上的函數(shù)f(x),若滿足對?x1,x2∈D,且x1<x2時都有 f(x1)≥f(x2),則稱函數(shù)f(x)為區(qū)間D上的“非增函數(shù)”.若f(x)為區(qū)間[0,1]上的“非增函數(shù)”且f(0)=l,f(x)+f(l-x)=l,又當(dāng)x∈[0,
1
4
]
時,f(x)≤-2x+1恒成立.有下列命題:
①?x∈[0,1],f(x)≥0;
②當(dāng)x1,x2∈[0,1]且x1≠x2,時,f(x1)≠f(x)
?x∈[
1
4
,
3
4
]
時,都有f(x)=
1
2

④函數(shù)f(x)的圖象關(guān)于點(diǎn)(
1
2
,
1
2
)
對稱
其中你認(rèn)為正確的所有命題的序號為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鹽城一模)對于定義在區(qū)間D上的函數(shù)f(x),若任給x0∈D,均有f(x0)∈D,則稱函數(shù)f(x)在區(qū)間D上封閉.
(1)試判斷f(x)=x-1在區(qū)間[-2.1]上是否封閉,并說明理由;
(1)若函數(shù)g(x)=
3x+ax+1
在區(qū)間[3,10]上封閉,求實(shí)數(shù)a的取值范圍;
(1)若函數(shù)h(x)=x3-3x在區(qū)間[a,b[(a,b∈Z)上封閉,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•綿陽三模)對于定義在區(qū)間D上的函數(shù)f(X),若存在閉區(qū)間[a,b]?D和常數(shù)c,.使得對任意x1∈[a,b],都有f(x1)=c,且對任意x2∈D,當(dāng)x2∉[a,b]時,f(x2)<c恒成立,則稱函數(shù)f(X)為區(qū)間D上的“平頂型”函數(shù).給出下列說法:
①“平頂型”函數(shù)在定義域內(nèi)有最大值;
②“平頂型”函數(shù)在定義域內(nèi)一定沒有最小值;
③函數(shù)f(x)=-|x+2|-|x-1|為R上的“平頂型”函數(shù);
④函數(shù)f(x)=sinx-|sinx|為R上的“平頂型”函數(shù).
則以上說法中正確的是
①③
①③
.(填上你認(rèn)為正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•綿陽三模)對于定義在區(qū)間D上的函數(shù)f(X),若存在閉區(qū)間[a,b]?D和常數(shù)c,使得對任意x1∈[a,b],都有f(x1)=c,且對任意x2∈D,當(dāng)x2∉[a,b]時,f(x2)<c恒成立,則稱函數(shù)f(x)為區(qū)間D上的“平頂型”函數(shù).給出下列說法:
①“平頂型”函數(shù)在定義域內(nèi)有最大值;
②函數(shù)f(x)=x-|x-2|為R上的“平頂型”函數(shù);
③函數(shù)f(x)=sinx-|sinx|為R上的“平頂型”函數(shù);
④當(dāng)t≤
3
4
時,函數(shù),f(x)=
2,(x≤1)
log
1
2
(x-t),(x>1)
是區(qū)間[0,+∞)上的“平頂型”函數(shù).
其中正確的是
①②④
①②④
.(填上你認(rèn)為正確結(jié)論的序號)

查看答案和解析>>

同步練習(xí)冊答案