【題目】如圖,在直三棱柱ABC﹣A1B1C1中,底面△ABC是等腰直角三角形,且斜邊 ,側(cè)棱AA1=2,點(diǎn)D為AB的中點(diǎn),點(diǎn)E在線段AA1上,AE=λAA1(λ為實(shí)數(shù)).
(1)求證:不論λ取何值時(shí),恒有CD⊥B1E;
(2)當(dāng) 時(shí),記四面體C1﹣BEC的體積為V1 , 四面體D﹣BEC的體積為V2 , 求V1:V2 .
【答案】
(1)證明:∵△ABC是等腰直角三角形,點(diǎn)D為AB的中點(diǎn),
∴CD⊥AB.…
∵AA1⊥平面ABC,CD平面ABC,∴AA1⊥CD.…
又∵AA1平面ABB1A1,AB平面ABB1A1,AA1∩AB=A,∴CD⊥平面ABB1A1.…
又∵B1E平面ABB1A1,∴CD⊥B1E.…
(2)∵△ABC是等腰直角三角形,且斜邊 ,∴AC=BC=1. ,… ,…
所以V1:V2=6…
【解析】(1)由已知可得到CD⊥AB,根據(jù)線面垂直可得到AA1⊥CD,不難得到線CD⊥面ABB1A1即有CD⊥B1E,(2)當(dāng) λ = 時(shí),表示出各邊的大小,根據(jù)等體積法可得其比值的大小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 存在互不相等實(shí)數(shù)a,b,c,d,有f(a)=f(b)=f(c)=f(d)=m.現(xiàn)給出三個(gè)結(jié)論:
⑴m∈[1,2);
⑵a+b+c+d∈[e﹣3+e﹣1﹣2,e﹣4﹣1),其中e為自然對(duì)數(shù)的底數(shù);
⑶關(guān)于x的方程f(x)=x+m恰有三個(gè)不等實(shí)根.
正確結(jié)論的個(gè)數(shù)為( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問(wèn)題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問(wèn),米幾何?”如圖是解決該問(wèn)題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為( 。
A.4.5
B.6
C.7.5
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,AC=2,A=120°, .
(Ⅰ)求邊AB的長(zhǎng);
(Ⅱ)設(shè)(3,4)是BC邊上一點(diǎn),且△ACD的面積為 ,求∠ADC的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f'(x)=2x+m,且f(0)=0,函數(shù)f(x)的圖象在點(diǎn)A(1,f(1))處的切線的斜率為3,數(shù)列 的前n項(xiàng)和為Sn , 則S2017的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)實(shí)數(shù)λ>0,若對(duì)任意的x∈(0,+∞),不等式eλx﹣ ≥0恒成立,則λ的最小值為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C1:x2+y2=r2(r>0)與直線l0:y= 相切,點(diǎn)A為圓C1上一動(dòng)點(diǎn),AN⊥x軸于點(diǎn)N,且動(dòng)點(diǎn)M滿足 ,設(shè)動(dòng)點(diǎn)M的軌跡為曲線C.
(1)求動(dòng)點(diǎn)M的軌跡曲線C的方程;
(2)若直線l與曲線C相交于不同的兩點(diǎn)P、Q且滿足以PQ為直徑的圓過(guò)坐標(biāo)原點(diǎn)O,求線段PQ長(zhǎng)度的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰梯形ABCD中AB∥CD,AB=2CD=4,∠BAD=60°,雙曲線以A,B為焦點(diǎn),且與線段CD(包括端點(diǎn)C、D)有兩個(gè)交點(diǎn),則該雙曲線的離心率的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) , .
(1)求函數(shù) 的單調(diào)增區(qū)間;
(2)若 ,解不等式 ;
(3)若 ,且對(duì)任意 ,方程 在 總存在兩不相等的實(shí)數(shù)根,求 的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com