分析:①由(a-b)
2+(a-c)
2+(b-c)
2≥0,展開得即可判斷出;
②當(dāng)x>0時,變形利用均值不等式可得
f(x)=+2x=
+x+x≥3,即可判斷出;
③當(dāng)x>1時,變形利用基本不等式可得
=x+
=
(x-1)++1≥2+1,即可判斷出;
④當(dāng)x>0時,
x+≥2=2,當(dāng)且僅當(dāng)x=1時取等號,令x+
=t≥2,
x++=
t+,令f(t)=
t+,(t≥2).利用導(dǎo)數(shù)判斷函數(shù)f(t)在[2,+∞)上單調(diào)性即可.
解答:解:①由(a-b)
2+(a-c)
2+(b-c)
2≥0,展開得a
2+b
2+c
2≥ab+bc+ac,故正確;
②當(dāng)x>0時,
f(x)=+2x=
+x+x≥3=3,當(dāng)且僅當(dāng)x=1時取等號,∴f(x)最小值為3,故不正確;
③當(dāng)x>1時,
=x+
=
(x-1)++1≥2+1=5,當(dāng)且僅當(dāng)x=3時取等號,∴最小值為5,正確;
④當(dāng)x>0時,
x+≥2=2,當(dāng)且僅當(dāng)x=1時取等號,令x+
=t≥2,
x++=
t+,
令f(t)=
t+,(t≥2).則f′(t)=1-
=
>0,∴函數(shù)f(t)在[2,+∞)上單調(diào)遞增,∴f(t)≥f(2)=
.
故
x++的最小值為
,因此正確.
綜上可知:只有①③④正確.
故答案為①③④.
點評:本題綜合考查了變形利用基本不等式的性質(zhì)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、換元法等基礎(chǔ)知識與基本技能方法,屬于中檔題.