【題目】在四棱錐中, 平面, , , , .
(1)證明;
(2)求二面角的余弦值;
(3)設(shè)點(diǎn)為線段上一點(diǎn),且直線平面所成角的正弦值為,求的值.
【答案】(1)見解析(2)(3)
【解析】試題分析:(1)先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),表示直線方法向量,再根據(jù)向量數(shù)量積為零進(jìn)行證明(2)先利用方程組解得各面法向量,再根據(jù)向量數(shù)量積求兩法向量夾角,最后根據(jù)二面角與法向量夾角關(guān)系得二面角的余弦值;(3)根據(jù)共線關(guān)系設(shè)點(diǎn)坐標(biāo),利用線面角得等量關(guān)系,解方程可得的值.
試題解析:以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系, , ,
(1), ,
∵∴
(2), ,平面的法向量為
, ,平面的法向量為.
,二面角的余弦值為.
(3)∵,
∴
設(shè)為直線與平面所成的角
,解得(舍)或.
所以, 即為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,側(cè)棱PD⊥底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)求證:PA∥平面BDE;
(2)求證:PB⊥平面DEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的不等式(其中)。
(1)當(dāng)a=4時(shí),求不等式的解集;
(2)若不等式有解,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)設(shè)函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)函數(shù)有最大值且最大值大于時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出的普通方程和的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在上,點(diǎn)在上,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把一副三角板ABC與ABD擺成如圖所示的直二面角D﹣AB﹣C,(其中BD=2AD,BC=AC)則異面直線DC,AB所成角的正切值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=2BC,點(diǎn)M在邊DC上,點(diǎn)F在邊AB上,且DF⊥AM,垂足為E,若將△ADM沿AM折起,使點(diǎn)D位于D′位置,連接D′B,D′C得四棱錐D′﹣ABCM.
(1)求證:AM⊥D′F;
(2)若∠D′EF= ,直線D'F與平面ABCM所成角的大小為 ,求直線AD′與平面ABCM所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣x+a,a∈R,
(1)當(dāng)a=2時(shí),解不等式f(x)>3;
(2)若函數(shù)f(x)有最大值﹣2,求實(shí)數(shù)a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com