精英家教網 > 高中數學 > 題目詳情
過點P(1,0)作曲線C:y=xk(x∈(0,+∞),k∈N*,k>1)的切線,切點為M1,設M1在x軸上的投影是點P1.又過點P1作曲線C的切線,切點為M2,設M2在x軸上的投影是點P2….依此下去,得到一系列點M1,M2,…,Mn,…,設它們的橫坐標a1,a2,…,an,…,構成數列{an}.(a1≠0).
(1)求證數列{an}是等比數列,并求其通項公式;
(2)求證:an≥1+
n
k+1

(3)若k=2,記bn=
n
i=0
(-1)i
a
2
n-i
C
i
2n-i+1
,求b2010
分析:(1)要證數列{an}是等比數列,只需利用已知條件證明
an
an-1
=
k
k-1
是常數即可,利用通項公式的求法直接求其通項公式;
(2)要證an≥1+
n
k+1
,先驗證n=1然后利用二項式定理,采用放縮法證明即可.
(3)若k=2,記bn=
n
i=0
(-1)i
a
2
n-i
C
i
2n-i+1
,求出bn=2bn-1-bn-2,解得bn=n+1,然后求b2010
解答:解:(1)對y=xk求導數,得y/=kxk-1,切點是Mn(an,ank)的切線方程是y-ank=kank-1(x-an).
當n=1時,切線過點P(1,0),即0-a1k=ka1k-1(x-a1),得a1=
k
k-1
,
當n>1時,切線過點Pn-1(an-1,0),即0-ank=kank-1(an-1-an),得
an
an-1
=
k
k-1

所以數列{an}是首項a1=
k
k-1
,公比為
k
k-1
的等比數列,且通項公式為an=(
k
k-1
)n

(2)當n=1時,a1=
k
k-1
=1+
1
k-1
,當n≥2時,應用二項式定理,an=(
k
k-1
)n=(1+
1
k-1
)n=
C
0
n
+
C
1
n
1
k-1
+
C
2
n
(
1
k-1
)2++
C
n
n
(
1
k-1
)n≥1+
n
k-1

(3)an=2n,bn=
n
i=0
(-1)i22n-2i
C
i
2n-i+1
,設cn=
n
i=0
(-1)i22n-2i
C
i
2n-1
,
則bn=22n+
n
i=1
(-1)i22n-2i(
C
1
2n-1
+
C
i-1
2n-1
)=
n
i=0
(-1)i22n-2i
C
i
2n-1
-
n-1
j=0
(-1)j22(n-1)-2j
C
j
2(n-1)-j+1
=cn-bn-1
同理cn=22n+
n-1
i=1
(-1)i22n-2i(
C
i
2n-i-1
+
C
i-1
2n-i-1
)+(-1)n
=
n-1
i=0
(-1)i22n-2i
C
i
2n-i-1
+
n
i=1
(-1)i22n-2i
C
i
2n-i-1
+
n
i=1
(-1)i22n-2i
C
i-1
2n-i-1
=4
n-1
i=0
(-1)i22(n-1)-2i
C
i
2(n-1)-i+1
-
n-1
k=0
(-1)k22(n-1)-2k
C
k
2(n-1)-k

=4bn-1-Cn-1
∴bn+bn-1=cn=4bn-1-cn-1=4bn-1-bn-1-bn-2,即bn=2bn-1-bn-2,∴bn-bn-1=bn-1-bn-2═b1-b0=2-1=1,
故bn=n+1,∴b2010=2011.
點評:本題是中檔題,考查數列的通項公式的求法,數列的證明,數列的化簡與構造法的應用,是本題解題的關鍵,注意二項式定理的應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,過點P(1,0)作曲線C:y=xk(x∈(0,+∞),k∈N*,k>1)的切線,切點為Q1,設Q1點在x軸上的投影是點P1;又過點P1作曲線C的切線,切點為Q2,設Q2在x軸上的投影是P2;…;依此下去,得到一系列點Q1,Q2,…,Qn,…,設點Qn的橫坐標為an
(Ⅰ)試求數列{an}的通項公式an;(用k的代數式表示)
(Ⅱ)求證:an≥1+
n
k-1

(Ⅲ)求證:
n
i=1
i
ai
k2-k
(注:
n
i=1
ai=a1+a2+…+an
).

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•錦州一模)過點P(1,0)作曲線C:y=x2(x>0)的切線,切點為Q1,沒Q1在x軸上的投影是P1,又過P1,作曲線C的切線,切點為Q2,設Q2在x軸上的投影是P2…,依次下去,得到一系列點Q1Q2,…Qn,設Qn的橫坐標為an
(I)求a1的值及{an}的通項公式;
(Ⅱ)令bn=
an(an-1)(an+1-1)
,設數列{bn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

過點P(1,0)作曲線C:y=x2(x∈(0,+∞)的切線,切點為M1,設M1在x軸上的投影是點P1.又過點P1作曲線C的切線,切點為M2,設M2在x軸上的投影是點P2,….依此下去,得到一系列點M1,M2…,Mn,…,設它們的橫坐標a1,a2,…,an,…,構成數列為{an}.
(1)求證數列{an}是等比數列,并求其通項公式;
(2)令bn=
nan
,求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•韶關二模)如圖,過點P(1,0)作曲線C:y=x2(x∈(0,+∞))的切線,切點為Q1,設點Q1在x軸上的投影是點P1;又過點P1作曲線C的切線,切點為Q2,設Q2在x軸上的投影是P2;…;依此下去,得到一系列點Q1,Q2,Q3-Qn,設點Qn的橫坐標為an
(1)求直線PQ1的方程;
(2)求數列{an}的通項公式;
(3)記Qn到直線PnQn+1的距離為dn,求證:n≥2時,
1
d1
+
1
d2
+…
1
dn
>3.

查看答案和解析>>

科目:高中數學 來源: 題型:

過點P(1,0)作曲線C:y=x2(x>0)的切線,切點為M1,設點M1在x軸上的投影是點P1,又過點P1作曲線C的切線,切點為M2,設點M2在x軸上的投影是點P2,…依此下去,得到點列P1,P2,P3,…,記它們的橫坐標a1,a2,a3,…構成數列{an}.
(Ⅰ)求an與an-1(n≥2)的關系式;
(Ⅱ)令bn=
nan
,求數列{bn}的前n項和.

查看答案和解析>>

同步練習冊答案