在斜三棱柱中,平面平面ABC,.

(1)求證:;

(2)若,求二面角的余弦值.

 

 

(1)證明過程詳見解析;(2).

【解析】

試題分析:本題主要考查線線垂直、線面垂直、面面垂直、線線平行、二面角的余弦等基礎(chǔ)知識,考查學生的空間想象能力、邏輯推理能力、計算能力.第一問,利用面面垂直的性質(zhì)得BC⊥平面A1ACC1,則利用線面垂直的性質(zhì)得A1A⊥BC,由A1B⊥C1C,利用平行線A1A∥C1C,則A1A⊥A1B,利用線面垂直的判定得A1A⊥平面A1BC,則利用線面垂直的性質(zhì)得A1A⊥A1C;第二問,建立空間直角坐標系,得到面上的點的坐標,計算出向量坐標,求出平面和平面的法向量,利用夾角公式計算出二面角的余弦值.

(1)因為平面A1ACC1⊥平面ABC,AC⊥BC,所以BC⊥平面A1ACC1,

所以A1A⊥BC.

因為A1B⊥C1C,A1A∥C1C,所以A1A⊥A1B,

所以A1A⊥平面A1BC,所以A1A⊥A1C. 5分

(2)建立如圖所示的坐標系C-xyz.

設(shè)AC=BC=2,因為A1A=A1C,

則A(2,0,0),B(0,2,0),A1(1,0,1),C(0,0,0).

=(0,2,0),=(1,0,1),=(-2,2,0).

設(shè)n1=(a,b,c)為面BA1C的一個法向量,則n1·=n1·=0,

,取n1=(1,0,-1).

同理,面A1CB1的一個法向量為n2=(1,1,-1). 9分

所以cos?n1,n2?=,

故二面角B-A1C-B1的余弦值為. 12分

考點:線線垂直、線面垂直、面面垂直、線線平行、二面角的余弦.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2013-2014學年河北省石家莊市畢業(yè)班第一次模擬考試數(shù)學理文數(shù)學試卷(解析版) 題型:解答題

已知O為銳角△ABC的外心,AB=6,AC=10,,且2x+10y=5,則邊BC的長

為.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年河北省唐山市高三年級第二次模擬考試文科數(shù)學試卷(解析版) 題型:解答題

長為3的線段兩端點A,B分別在x軸正半軸和y軸的正半軸上滑動,,點P的軌跡為曲線C.

(1)以直線AB的傾斜角為參數(shù),求曲線C的參數(shù)方程;

(2)求點P到點距離的最大值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年河北省唐山市高三年級第二次模擬考試文科數(shù)學試卷(解析版) 題型:選擇題

已知函數(shù)的部分圖像如圖所示,則( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年河北省唐山市高三年級第三次模擬考試理科數(shù)學試卷(解析版) 題型:解答題

已知曲線的直角坐標方程為. 以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系. P是曲線上一點,,,將點P繞點O逆時針旋轉(zhuǎn)角后得到點Q,,點M的軌跡是曲線.

(1)求曲線的極坐標方程;

(2)求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年河北省唐山市高三年級第三次模擬考試理科數(shù)學試卷(解析版) 題型:填空題

曲線處的切線方程為 .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年河北省唐山市高三年級第三次模擬考試理科數(shù)學試卷(解析版) 題型:選擇題

橢圓的左、右焦點為,過作直線交C于A,B兩點,若是等腰直角三角形,且,則橢圓C的離心率為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年河北省唐山市高三年級第三次模擬考試文科數(shù)學試卷(解析版) 題型:填空題

曲線處的切線方程為 .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年河北省高三下學期調(diào)研考試文科數(shù)學試卷(解析版) 題型:解答題

2013年9月20日是第25個全國愛牙日。某區(qū)衛(wèi)生部門成立了調(diào)查小組,調(diào)查 “常吃零食與患齲齒的關(guān)系”,對該區(qū)六年級800名學生進行檢查,按患齲齒和不患齲齒分類,得匯總數(shù)據(jù):不常吃零食且不患齲齒的學生有60名,常吃零食但不患齲齒的學生有100名,不常吃零食但患齲齒的學生有140名.

(1)能否在犯錯概率不超過0.001的前提下,認為該區(qū)學生的常吃零食與患齲齒有關(guān)系?

(2)4名區(qū)衛(wèi)生部門的工作人員隨機分成兩組,每組2人,一組負責數(shù)據(jù)收集,另一組負責數(shù)據(jù)處理.求工作人員甲分到負責收集數(shù)據(jù)組,工作人員乙分到負責數(shù)據(jù)處理組的概率.

0.010

0.005

0.001

6.635

7.879

10.828

附:

 

查看答案和解析>>

同步練習冊答案