精英家教網 > 高中數學 > 題目詳情

(本題滿分15分)已知函數  且導數.

  (Ⅰ)試用含有的式子表示,并求單調區(qū)間;  (II)對于函數圖象上的不同兩點,如果在函數圖象上存在點(其中)使得點處的切線,則稱存在“伴侶切線”.特別地,當時,又稱存在“中值伴侶切線”.試問:在函數上是否存在兩點、使得它存在“中值伴侶切線”,若存在,求出、的坐標,若不存在,說明理由.

(Ⅰ) 上單調遞增,在上單調遞減   (Ⅱ)  不存在


解析:

(Ⅰ)的定義域為  , 得:  …2分  代入:  得

時,  由 ,得

  即 上單調遞增          ……4分

時,  由 ,得

  即 上單調遞減

 上單調遞增,在上單調遞減             ……6分

(II)  在函數上不存在兩點A、B使得它存在“中值伴侶切線”。

假設存在兩點,不妨設,則

,

=     ……8分

在函數圖象處的切線斜率

  

得:

化簡得:, …… 11分

,則,上式化為:,即

若令,

, 上單調遞增,

這表明在內不存在,使得             ……14分

綜上所述,在函數上不存在兩點A、B使得它存在“中值伴侶切線”。 …15分

練習冊系列答案
相關習題

科目:高中數學 來源:2013屆浙江省余姚中學高三上學期期中考試文科數學試卷(帶解析) 題型:解答題

(本題滿分15分)已知點(0,1),,直線、都是圓的切線(點不在軸上).
(Ⅰ)求過點且焦點在軸上的拋物線的標準方程;
(Ⅱ)過點(1,0)作直線與(Ⅰ)中的拋物線相交于兩點,問是否存在定點使為常數?若存在,求出點的坐標及常數;若不存在,請說明理由

查看答案和解析>>

科目:高中數學 來源:2013屆江蘇省揚州市高二下期中數學試卷(解析版) 題型:解答題

(本題滿分15分)

已知命題p,命題q. 若“pq”為真命題,求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年浙江省桐鄉(xiāng)市高三10月月考理科數學 題型:解答題

(本題滿分15分)已知函數

(Ⅰ)若為定義域上的單調函數,求實數m的取值范圍;

(Ⅱ)當時,求函數的最大值;

(Ⅲ)當,且時,證明:

 

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年浙江省桐鄉(xiāng)市高三下學期2月模擬考試文科數學 題型:解答題

(本題滿分15分)已知圓N:和拋物線C:,圓的切線與拋物線C交于不同的兩點A,B,

(1)當直線的斜率為1時,求線段AB的長;

(2)設點M和點N關于直線對稱,問是否存在直線使得?若存在,求出直線的方程;若不存在,請說明理由.

 

 

 

 

查看答案和解析>>

科目:高中數學 來源:杭州市2010年第二次高考科目教學質量檢測 題型:解答題

(本題滿分15分)已知直線,曲線

   (1)若且直線與曲線恰有三個公共點時,求實數的取值;

   (2)若,直線與曲線M的交點依次為A,B,C,D四點,求|AB+|CD|的取值范圍。[來源:Z+xx+k.Com]

      

 

查看答案和解析>>

同步練習冊答案