【題目】《中國詩詞大會》(第二季)亮點(diǎn)頗多,十場比賽每場都有一首特別設(shè)計(jì)的開場詩詞在聲光舞美的配合下,百人團(tuán)齊聲朗誦,別有韻味.若《將進(jìn)酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場,且《將進(jìn)酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場的排法有( )

A. 288 B. 144 C. 720 D. 360

【答案】B

【解析】

根據(jù)題意分步進(jìn)行分析:①用倍分法分析《將進(jìn)酒》,《望岳》和另外兩首詩詞的排法數(shù)目;②用插空法分析《山居秋暝》與《送杜少府之任蜀州》的排法數(shù)目,由分步計(jì)數(shù)原理計(jì)算可得答案

根據(jù)題意分步進(jìn)行分析:①將《將進(jìn)酒》,《望岳》和另外兩首詩詞的首詩詞全排列,則有

種順序

《將進(jìn)酒》排在《望岳》的前面,

首詩詞的排法有

②,這首詩詞排好后,不含最后,有個(gè)空位,在個(gè)空位中任選個(gè),安排《山居秋暝》與《送杜少府之任蜀州》,有種安排方法

則后六場的排法有

故選

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱的中點(diǎn).

(1)求證:;

(2)若點(diǎn)為四邊形內(nèi)部及其邊界上的點(diǎn),且三棱錐的體積為三棱柱體積的,試在圖中畫出點(diǎn)的軌跡,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年2月22日,在韓國平昌冬奧會短道速滑男子米比賽中,中國選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國代表隊(duì)奪得了本屆冬奧會的首枚金牌,也創(chuàng)造了中國男子冰上競速項(xiàng)目在冬奧會金牌零的突破.根據(jù)短道速滑男子米的比賽規(guī)則,運(yùn)動員自出發(fā)點(diǎn)出發(fā)進(jìn)入滑行階段后,每滑行一圈都要依次經(jīng)過個(gè)直道與彎道的交接口.已知某男子速滑運(yùn)動員順利通過每個(gè)交接口的概率均為,摔倒的概率均為.假定運(yùn)動員只有在摔倒或到達(dá)終點(diǎn)時(shí)才停止滑行,現(xiàn)在用表示該運(yùn)動員滑行最后一圈時(shí)在這一圈內(nèi)已經(jīng)順利通過的交接口數(shù).

(1)求該運(yùn)動員停止滑行時(shí)恰好已順利通過個(gè)交接口的概率;

(2)求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A是拋物線M:y2=2px(p>0)與圓C:x2+(y﹣4)2=a2在第一象限的公共點(diǎn),且點(diǎn)A到拋物線M焦點(diǎn)F的距離為a,若拋物線M上一動點(diǎn)到其準(zhǔn)線與到點(diǎn)C的距離之和的最小值為2a,O為坐標(biāo)原點(diǎn),則直線OA被圓C所截得的弦長為( )
A.2
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)對任意的mnR都有f(mn)=f(m)+f(n)-1,并且x>0時(shí),恒有f(x)>1.

(1)求證:f(x)R上是增函數(shù);

(2)f(3)=4,解不等式f(a2a-5)<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,DOAB是邊長為2的正三角形,當(dāng)一條垂直于底邊OA(垂足不與O,A重合)的直線x=t從左至右移動時(shí),直線l把三角形分成兩部分,記直線l左邊部分的面積y

)寫出函數(shù)y= ft)的解析式;

)寫出函數(shù)y= ft)的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O:x2+y2=4,點(diǎn)F( ,0),以線段MF為直徑的圓內(nèi)切于圓O,記點(diǎn)M的軌跡為C
(1)求曲線C的方程;
(2)若過F的直線l與曲線C交于A,B兩點(diǎn),問:在x軸上是否存在點(diǎn)N,使得 為定值?若存在,求出點(diǎn)N坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列的前項(xiàng)和,且

(1)求;

(2)令,計(jì)算,由此推測數(shù)列是等差數(shù)列還是等比數(shù)列,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種型號汽車四個(gè)輪胎半徑相同,均為R=40cm,同側(cè)前后兩輪胎之間的距離(指輪胎中心之間距離)為l=280cm (假定四個(gè)輪胎中心構(gòu)成一個(gè)矩形).當(dāng)該型號汽車開上一段上坡路ABC(如圖(1)所示,其中∠ABC=a( ),且前輪E已在BC段上時(shí),后輪中心在F位置;若前輪中心到達(dá)G處時(shí),后輪中心在H處(假定該汽車能順利駛上該上坡路).設(shè)前輪中心在E和G處時(shí)與地面的接觸點(diǎn)分別為S和T,且BS=60cm,ST=100cm.(其它因素忽略不計(jì))

(1)如圖(2)所示,F(xiàn)H和GE的延長線交于點(diǎn)O,求證:OE=40cot (cm);
(2)當(dāng)a= π時(shí),后輪中心從F處移動到H處實(shí)際移動了多少厘米?(精確到1cm)

查看答案和解析>>

同步練習(xí)冊答案