【題目】如圖,在三棱錐中,,其余棱長(zhǎng)均為是棱上的一點(diǎn),分別為棱的中點(diǎn).

(1)求證: 平面平面

(2)若平面,求的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2).

【解析】分析:(1)先證明PE ⊥平面ABC,再證明平面平面.(2) 連接CD交AE于O,連接OM,先證明PDOM,再利用相似求出的長(zhǎng).

詳解:(1)證明:如圖,連結(jié)PE.

因?yàn)椤鱌BC的邊長(zhǎng)為2的正三角形,E為BC中點(diǎn),

所以PE⊥BC,

且PE=,同理AE=

因?yàn)?/span>PA,所以PE2AE2PA2,所以PEAE

因?yàn)镻E⊥BC,PE⊥AE,BC∩AE=E,AE,BC 平面ABC,

所以PE ⊥平面ABC

因?yàn)镻E平面PBC,

所以平面PBC⊥平面ABC

(2)如圖,連接CD交AE于O,連接OM.

因?yàn)镻D∥平面AEM,PD平面PDC,平面AEM∩平面PDC=OM,

所以PDOM, 所以

因?yàn)镈,E分別為AB,BC的中點(diǎn),CD∩AE=O,

所以OABC重心,所以,

所以PMPC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為虛數(shù)集,設(shè),則下列類比所得的結(jié)論正確的是__________

①由,類比得

②由,類比得

③由,類比得

④由,類比得

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)討論的單調(diào)性;

(2)若,求證:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集為R,集合A={x|( x≤1},B={x|x2﹣6x+8≤0},則A∩(RB)=(
A.{x|x≤0}
B.{x|2≤x≤4}
C.{x|0≤x<2或x>4}
D.{x|0<x≤2或x≥4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a為常數(shù),函數(shù)f(x)=x(lnx﹣ax)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2)( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的焦點(diǎn)為,點(diǎn)是拋物線上一點(diǎn),且

(1)求的值;

(2)若為拋物線上異于的兩點(diǎn),且.記點(diǎn)到直線的距離分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)一名數(shù)學(xué)老師對(duì)全班50名學(xué)生某次考試成績(jī)分男女生進(jìn)行統(tǒng)計(jì)(滿分150分),其中120分(含120分)以上為優(yōu)秀,繪制了如圖所示的兩個(gè)頻率分布直方圖:

(1)根據(jù)以上兩個(gè)直方圖完成下面的列聯(lián)表:

性別 成績(jī)

優(yōu)秀

不優(yōu)秀

總計(jì)

男生

女生

總計(jì)

(2)根據(jù)(1)中表格的數(shù)據(jù)計(jì)算,你有多大把握認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)與性別之間有關(guān)系?

2.072

2.706

3.841

5.024

6.635

7.879

10.828

0.15

0.10

0.05

0.025

0.010

0.005

0.001

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)籃球隊(duì)在4次不同比賽中的得分情況如下:

甲隊(duì)

88

91

92

96

乙隊(duì)

89

93

9▓

92

乙隊(duì)記錄中有一個(gè)數(shù)字模糊(即表中陰影部分),無(wú)法確認(rèn),假設(shè)這個(gè)數(shù)字具有隨機(jī)性,并用表示.

(Ⅰ)在4次比賽中,求乙隊(duì)平均得分超過(guò)甲隊(duì)平均得分的概率;

(Ⅱ)當(dāng)時(shí),分別從甲、乙兩隊(duì)的4次比賽中各隨機(jī)選取1次,記這2個(gè)比賽得分之差的絕對(duì)值為,求隨機(jī)變量的分布列;

(Ⅲ)如果乙隊(duì)得分?jǐn)?shù)據(jù)的方差不小于甲隊(duì)得分?jǐn)?shù)據(jù)的方差,寫出的取值集合.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), ).

(1)如果曲線在點(diǎn)處的切線方程為,求, 的值;

(2)若, ,關(guān)于的不等式的整數(shù)解有且只有一個(gè),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案