函數(shù)f(x)=x2-2ax+3在[3,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是(  )
分析:求出函數(shù)的對(duì)稱軸,利用對(duì)稱軸和區(qū)間[3,+∞)的關(guān)系,求實(shí)數(shù)a的取值范圍.
解答:解:函數(shù)f(x)=x2-2ax+3的對(duì)稱軸為x=-
-2a
2
=a
,要使函數(shù)在[3,+∞)上單調(diào)遞增,
則區(qū)間[3,+∞)在對(duì)稱軸的右側(cè),即a≤3.
故實(shí)數(shù)a的取值范圍是(-∞,3].
故選A.
點(diǎn)評(píng):本題主要考查二次函數(shù)的單調(diào)性和對(duì)稱軸之間的關(guān)系,確定區(qū)間與對(duì)稱軸的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-ax+4+2lnx
(I)當(dāng)a=5時(shí),求f(x)的單調(diào)遞減函數(shù);
(Ⅱ)設(shè)直線l是曲線y=f(x)的切線,若l的斜率存在最小值-2,求a的值,并求取得最小斜率時(shí)切線l的方程;
(Ⅲ)若f(x)分別在x1、x2(x1≠x2)處取得極值,求證:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2+2x在[m,n]上的值域是[-1,3],則m+n所成的集合是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2-2x-3的圖象為曲線C,點(diǎn)P(0,-3).
(1)求過(guò)點(diǎn)P且與曲線C相切的直線的斜率;
(2)求函數(shù)g(x)=f(x2)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=-x2+2x,x∈(0,3]的值域?yàn)?!--BA-->
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+
12
x
+lnx的導(dǎo)函數(shù)為f′(x),則f′(2)=
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案