【題目】如圖,已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)為橢圓上任意一點(diǎn),關(guān)于原點(diǎn)的對稱點(diǎn)為,有,且的最大值.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是關(guān)于軸的對稱點(diǎn),設(shè)點(diǎn),連接與橢圓相交于點(diǎn),直線與軸相交于點(diǎn),試求的值.
【答案】(1)(2)
【解析】
(1)由對稱可得,故.又根據(jù)的最大值得到,進(jìn)而得到,,所以可得到橢圓的方程.(2)由題意可設(shè)直線的方程為,結(jié)合由直線方程與橢圓方程組成的方程組可得直線的方程為,令,得點(diǎn)的橫坐標(biāo),從而得到點(diǎn)為左焦點(diǎn),
進(jìn)而得到.
(1)因?yàn)辄c(diǎn)為橢圓上任意一點(diǎn),關(guān)于原點(diǎn)的對稱點(diǎn)為,
所以,
又,
所以,
.
又的最大值為,知當(dāng)為上頂點(diǎn)時(shí),最大,
所以,
所以,
所以.
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)由題意可知直線存在斜率,設(shè)直線的方程為,
由消去并整理得.
因?yàn)橹本與橢圓交于兩點(diǎn),
所以,
解得.
設(shè),,則,
且,,①
直線的方程為,
令,得 ,②
由①②得.
所以點(diǎn)為左焦點(diǎn),
因此,,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】20名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如下:
(1)求頻率直方圖中a的值;
(2)分別求出成績落在[50,60)與[60,70)中的學(xué)生人數(shù);
(3)從成績在[50,70)的學(xué)生中人選2人,求這2人的成績都在[60,70)中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù),直線.
討論的圖象與直線的交點(diǎn)個(gè)數(shù);
若函數(shù)的圖象與直線相交于,兩點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),以軸為非負(fù)半軸為極軸建立極坐標(biāo)系,兩坐標(biāo)系相同的長度單位.圓的方程為被圓截得的弦長為.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知變量x,y滿足約束條件,
(1)畫出上述不等式組所表示的平面區(qū)域;
(2)求z=2x﹣y的最大值;
(3)求z=(x+1)2+(y﹣4)2的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù).
(1) 列舉出所有可能的結(jié)果,并求兩點(diǎn)數(shù)之和為5的概率;
(2) 求以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)在圓 的內(nèi)部的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某校高二年級800名學(xué)生上學(xué)期期末語文和外語成績,按優(yōu)秀和不優(yōu)秀分類得結(jié)果:語文和外語都優(yōu)秀的有60人,語文成績優(yōu)秀但外語不優(yōu)秀的有140人,外語成績優(yōu)秀但語文不優(yōu)秀的有100人.
問:(1)由題意列出學(xué)生語文成績與外語成績關(guān)系的列聯(lián)表:
語文優(yōu)秀 | 語文不優(yōu)秀 | 總計(jì) | |
外語優(yōu)秀 | |||
外語不優(yōu)秀 | |||
總計(jì) |
(2)能否在犯錯概率不超過0.001的前提下認(rèn)為該校學(xué)生的語文成績與外語成績有關(guān)系?(保留三位小數(shù))
(附:)
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=2an-1(n∈N*),數(shù)列{bn}滿足nbn+1-(n+1)bn=n(n+1)(n∈N*),且b1=1.
(1)證明數(shù)列{}為等差數(shù)列,并求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若cn=(-1)n-1,求數(shù)列{cn}的前n項(xiàng)和T2n;
(3)若dn=an,數(shù)列{dn}的前n項(xiàng)和為Dn,對任意的n∈N*,都有Dn≤nSn-a,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com