如圖,在直角△ABC中,∠C=90°,AB=2BC,E、F為線段AC、AB上的點(diǎn),EF∥BC,將△AEF沿直線EF翻折成△A'EF,使平面A'EF⊥平面BCE,且T為A'B中點(diǎn),F(xiàn)T∥平面△A'EC
(1)問(wèn)E點(diǎn)在什么位置?并說(shuō)明理由;
(2)求直線FC與平面A'BC所成角的正弦值.

【答案】分析:(1)取A'C的中點(diǎn)記為S,連接ES、TS,易得四邊形EFTS為平行四邊形,從而可得E為AC中點(diǎn);
(2)求直線FC與平面A'BC所成角,關(guān)鍵是作出線面角,根據(jù)題意,易得∠FCT為所求.
解答:解:(1)由已知得T為A'B的中點(diǎn),取A'C的中點(diǎn)記為S,連接ES、TS,易得EF∥ST,
由平面EFTS∩平面A'EC=ES,F(xiàn)T∥平面A'EC,得FT∥ES,
四邊形EFTS為平行四邊形,得EF=ST,而,
所以E為AC中點(diǎn).
(2)E為中點(diǎn),即A'E=EC,則ES⊥A'C,易得BC⊥面A'EC,所以ES⊥面A'BC; ,即FT⊥面A'BC,直線FC與平面A'BC所成角即為∠FCT,

點(diǎn)評(píng):本題以平面圖形的翻折為依托,考查線面為主關(guān)系,考查線面角,關(guān)鍵是作出線面角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角△ABC中,∠C=90°,AB=2BC,E、F為線段AC、AB上的點(diǎn),EF∥BC,將△AEF沿直線EF翻折成△A'EF,使平面A'EF⊥平面BCE,且T為A'B中點(diǎn),F(xiàn)T∥平面△A'EC
(1)問(wèn)E點(diǎn)在什么位置?并說(shuō)明理由;
(2)求直線FC與平面A'BC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角△ABC中,AB=AC=2,分別以A,B,C為圓心,以
1
2
AC為半徑做弧,則三條弧與邊BC圍成的圖形(圖中陰影部分)的面積為
2-
π
2
2-
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角△ABC中,已知,若長(zhǎng)為

的線段以點(diǎn)為中點(diǎn),問(wèn)的夾角取何值時(shí)

的值最大?并求出這個(gè)最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角△ABC中,∠C=90°,AB=2BC,E、F為線段AC、AB上的點(diǎn),EFBC,將△AEF沿直線EF翻折成△A'EF,使平面A'EF⊥平面BCE,且T為A'B中點(diǎn),F(xiàn)T平面△A'EC
(1)問(wèn)E點(diǎn)在什么位置?并說(shuō)明理由;
(2)求直線FC與平面A'BC所成角的正弦值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省溫州市蒼南中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,在直角△ABC中,∠C=90°,AB=2BC,E、F為線段AC、AB上的點(diǎn),EF∥BC,將△AEF沿直線EF翻折成△A'EF,使平面A'EF⊥平面BCE,且T為A'B中點(diǎn),F(xiàn)T∥平面△A'EC
(1)問(wèn)E點(diǎn)在什么位置?并說(shuō)明理由;
(2)求直線FC與平面A'BC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案