【題目】已知非零向量,滿(mǎn)足(2-)⊥,集合A={x|x2+(||+||)x+||||=0}中有且僅有唯一一個(gè)元素.
(1)求向量,的夾角θ;
(2)若關(guān)于t的不等式|-t|<|-m|的解集為空集,求實(shí)數(shù)m的值.
【答案】(1);(2).
【解析】
(1)由題意利用二次函數(shù)的性質(zhì)、兩個(gè)向量垂直的性質(zhì),可得,求得,的值,可得,的值.
(2)不等式平方整理,方程無(wú)解,故,由此求得的值.
解:(1)∵方程x2+(||+||)x+||||=0 有且僅有唯一一個(gè)實(shí)根,
∴△=-4||||==0,∴||=||.
∵(2-)⊥,∴(2-)=0,即2=,求得cos<,>=,∴<,>=60°.
(2)關(guān)于t的不等式|-t|<|-m|的解集為空集,即+t2-2t<+m2-2m的解集為空集,即t2-t-m2+m<0無(wú)解,∴△=12-4(-m2+m)≤0,即(2m-1)2≤0,∴m=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(2-a)x-2(1+ln x)+a,若函數(shù)f(x)在區(qū)間上無(wú)零點(diǎn),求實(shí)數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)()在區(qū)間(0,)上至多取到兩次最大值,且在區(qū)間(,)上不單調(diào),則滿(mǎn)足條件的的個(gè)數(shù)是( 。
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c.已知bsinA=3csinB,a=3, .
(1)求b的值;
(2)求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓C:過(guò)點(diǎn)M(2,0),且右焦點(diǎn)為F(1,0),過(guò)F的直線(xiàn)l與橢圓C相交于A、B兩點(diǎn).設(shè)點(diǎn)P(4,3),記PA、PB的斜率分別為k1和k2.
(1)求橢圓C的方程;
(2)如果直線(xiàn)l的斜率等于-1,求出k1k2的值;
(3)探討k1+k2是否為定值?如果是,求出該定值;如果不是,求出k1+k2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)閇﹣1,5],部分對(duì)應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.
x | ﹣1 | 0 | 4 | 5 |
f(x) | 1 | 2 | 2 | 1 |
下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)y=f(x)是周期函數(shù);
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當(dāng)x∈[﹣1,t]時(shí),f(x)的最大值是2,那么t的最大值為5;
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)﹣a有4個(gè)零點(diǎn).
其中所有真命題的序號(hào)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象與軸的交點(diǎn)為,它在軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為和.
(1)求解析式及的值;
(2)求的單調(diào)增區(qū)間;
(3)若時(shí),函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=-x2+2mx+7.
(Ⅰ)已知函數(shù)y=(x)在區(qū)間[1,3]上的最小值為4,求m的值;
(Ⅱ)若不等式f(x)≤x2-6x+11在區(qū)間[1,2]上恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司2016年前三個(gè)月的利潤(rùn)(單位:百萬(wàn)元)如下:
月份 | 1 | 2 | 3 |
利潤(rùn) | 2 | 3.9 | 5.5 |
(1)求利潤(rùn)關(guān)于月份的線(xiàn)性回歸方程;
(2)試用(1)中求得的回歸方程預(yù)測(cè)4月和5月的利潤(rùn);
(3)試用(1)中求得的回歸方程預(yù)測(cè)該公司2016年從幾月份開(kāi)始利潤(rùn)超過(guò)1000萬(wàn)?
相關(guān)公式:.
【答案】(1);(2)905萬(wàn);(3)6月
【解析】試題(1)根據(jù)平均數(shù)和最小二乘法的公式,求解,求出,即可求解回歸方程;(2)把和分別代入,回歸直線(xiàn)方程,即可求解;(3)令,即可求解的值,得出結(jié)果.
試題解析:(1),,,
故利潤(rùn)關(guān)于月份的線(xiàn)性回歸方程.
(2)當(dāng)時(shí),,故可預(yù)測(cè)月的利潤(rùn)為萬(wàn).
當(dāng)時(shí),, 故可預(yù)測(cè)月的利潤(rùn)為萬(wàn).
(3)由得,故公司2016年從月份開(kāi)始利潤(rùn)超過(guò)萬(wàn).
考點(diǎn):1、線(xiàn)性回歸方程;2、平均數(shù).
【題型】解答題
【結(jié)束】
21
【題目】已知定義在上的函數(shù)(),并且它在上的最大值為
(1)求的值;
(2)令,判斷函數(shù)的奇偶性,并求函數(shù)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com