【題目】已知圓上的動(dòng)點(diǎn),點(diǎn)QNP上,點(diǎn)GMP上,且滿足.

I)求點(diǎn)G的軌跡C的方程

II)過(guò)點(diǎn)(2,0)作直線,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè) 是否存在這樣的直線,使四邊形OASB的對(duì)角線相等(即|OS|=|AB|)?若存在,求出直線的方程若不存在,試說(shuō)明理由.

【答案】(1) ;(2)存在直線使得四邊形OASB的對(duì)角線相等.

【解析】本試題主要是考查了圓錐曲線的軌跡方程的求解,借助于向量的工具,來(lái)表示,同時(shí)能運(yùn)用聯(lián)立方程組的思想表示出直線與圓錐曲線的交點(diǎn)問(wèn)題的關(guān)系式,結(jié)合向量得到直線方程。

1)根據(jù)局題中的向量的關(guān)系式,運(yùn)用坐標(biāo)法表示得到軌跡方程

2)設(shè)直線方程與橢圓的方程聯(lián)立,然后結(jié)合題中的圖形的特點(diǎn)和向量的關(guān)系式,得到直線關(guān)系式,確定直線的存在與否。

解:(1QPN的中點(diǎn)且GQ⊥PN

GQPN的中垂線|PG|=|GN|---------------------------------3分)

∴|GN|+|GM|=|MP|=6,故G點(diǎn)的軌跡是以M、N為焦點(diǎn)的橢圓,其長(zhǎng)半軸長(zhǎng),半焦距,短半軸長(zhǎng)b=2,點(diǎn)G的軌跡方程是---------6分)

2)因?yàn)?/span>,所以四邊形OASB為平行四邊形,若存在l使得||=||,則四邊形OASB為矩形……………7分)

l的斜率不存在,直線l的方程為x=2,由

矛盾,……………8分)

l的斜率存在,設(shè)l的方程為

……………………10分)

①………………………11分)

② ………… ……………12分)

代入存在直線使得四邊形OASB的對(duì)角線相等. ……… …………………… ……………14分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面內(nèi)兩定點(diǎn),動(dòng)點(diǎn),滿足,動(dòng)點(diǎn)的軌跡為曲線,給出下列五個(gè)命題:

①存在,使曲線過(guò)坐標(biāo)原點(diǎn);

②對(duì)于任意,曲線軸有三個(gè)交點(diǎn);

③曲線關(guān)于軸對(duì)稱,但不關(guān)于軸對(duì)稱;

④若三點(diǎn)不共線,則周長(zhǎng)最小值為;

⑤曲線上與不共線的任意一點(diǎn)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)為,則四邊形的面積不大于.

其中真命題的序號(hào)是__________(填上所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)在中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,已知,.()若的面積等于,求;)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A、B、C的對(duì)應(yīng)邊分別為a、b、c,若向量 =(a﹣b,1)與向量 =(a﹣c,2)共線,且∠A=120°.
(1)a:b:c;
(2)若△ABC外接圓的半徑為14,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體中,,點(diǎn)的中點(diǎn).

(1)求證:直線∥平面;

(2)求證:平面 平面;

(3)求證:直線 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log )滿足f(﹣2)=1,其中a為實(shí)常數(shù).
(1)求a的值,并判定函數(shù)f(x)的奇偶性;
(2)若不等式f(x)>( x+t在x∈[2,3]上恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)及圓.

(1)若直線過(guò)點(diǎn)且與圓心的距離為1,求直線的方程;

(2)若過(guò)點(diǎn)的直線與圓交于、兩點(diǎn),且,求以為直徑的圓的方程;

(3)若直線與圓交于,兩點(diǎn),是否存在實(shí)數(shù),使得過(guò)點(diǎn)的直線垂直平分弦?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小圖給出了某池塘中的浮萍蔓延的面積與時(shí)間(月)的關(guān)系的散點(diǎn)圖.有以下敘述:

①與函數(shù)相比,函數(shù)作為近似刻畫(huà)的函數(shù)關(guān)系的模型更好;

②按圖中數(shù)據(jù)顯現(xiàn)出的趨勢(shì),第個(gè)月時(shí),浮萍的面積就會(huì)超過(guò);

③按圖中數(shù)據(jù)顯現(xiàn)出的趨勢(shì),浮萍每個(gè)月增加的面積約是上個(gè)月增加面積的兩倍;

④按圖中數(shù)據(jù)顯現(xiàn)出的趨勢(shì),浮萍從月的蔓延到至少需要經(jīng)過(guò)個(gè)月.

其中正確的說(shuō)法有__________(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為及時(shí)了解適齡公務(wù)員對(duì)開(kāi)放生育二胎政策的態(tài)度,某部門(mén)隨機(jī)調(diào)查了90位30歲到40歲的公務(wù)員,得到情況如表:
(1)完成表格,并判斷是否有99%以上的把握認(rèn)為“生二胎意愿與性別有關(guān)”,并說(shuō)明理由;
(2)現(xiàn)把以上頻率當(dāng)作概率,若從社會(huì)上隨機(jī)獨(dú)立抽取三位30歲到40歲的男公務(wù)員訪問(wèn),求這三人中至少有一人有意愿生二胎的概率.
(3)已知15位有意愿生二胎的女性公務(wù)員中有兩位來(lái)自省婦聯(lián),該部門(mén)打算從這15位有意愿生二胎的女性公務(wù)員中隨機(jī)邀請(qǐng)兩位來(lái)參加座談,設(shè)邀請(qǐng)的2人中來(lái)自省女聯(lián)的人數(shù)為X,求X的公布列及數(shù)學(xué)期望E(X).

男性公務(wù)員

女性公務(wù)員

總計(jì)

有意愿生二胎

30

15

無(wú)意愿生二胎

20

25

總計(jì)

附:

P(k2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案