已知函數(shù)f(x)=ln x-ax(a∈R).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=且g(x)≤1恒成立,求實(shí)數(shù)a的取值范圍.
(1) 當(dāng)a≤0時(shí),f(x)在(0,+∞)上單調(diào)遞增;當(dāng)a>0時(shí),f(x)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2) a≥-1.
【解析】(1)f′(x)=-a=(x>0),
當(dāng)a≤0時(shí),f′(x)>0,則f(x)在(0,+∞)上單調(diào)遞增;
當(dāng)a>0時(shí),若f′(x)>0,則0<x< ,若f′(x)<0,則x> ,
故此時(shí)f(x)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(2)令h(x)=ax-1(-1≤x≤0),
當(dāng)a=0時(shí),h(x)=-1,g(x)max=f(1)=0≤1,符合題意.
當(dāng)a<0時(shí),h(x)max=h(-1)=-a-1,f(x)max=f(1)=-a,
∴g(x)max=-a≤1,結(jié)合a<0,可得-1≤a<0.
當(dāng)a>0時(shí),h(x)max=h(0)=-1.
若≥1,即0<a≤1,f(x)max=f(1)=-a≥-1,
∴g(x)max=-a≤1,結(jié)合0<a≤1,可得0<a≤1.
若<1,即a>1,f(x)max=f =ln-1<-1,
∴g(x)max=-1≤1,符合題意.
綜上所述,當(dāng)g(x)≤1恒成立時(shí),a≥-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集3B講練習(xí)卷(解析版) 題型:選擇題
已知x>0,y>0,若不等式恒成立,則實(shí)數(shù)m的最大值為( )
A.10 B.9 C.8 D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集2A講練習(xí)卷(解析版) 題型:填空題
在如圖所示的數(shù)陣中,第9行的第2個(gè)數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集1B講練習(xí)卷(解析版) 題型:選擇題
“a>1”是“a2>1”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集1A講練習(xí)卷(解析版) 題型:選擇題
設(shè)M={x|y=ln(x-1)},N={y|y=x2+1},則有( )
A.M=N B.M∩N=M
C.M∪N=M D.M∪N=R
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集19講練習(xí)卷(解析版) 題型:選擇題
已知向量α,β,γ滿足|α|=1,|α-β|=|β|,(α-γ)·(β-γ)=0.若對(duì)每一個(gè)確定的β,|γ|的最大值和最小值分別為m,n,則對(duì)任意β,m-n的最小值是( )
A. B.1 C.2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集19講練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)=為奇函數(shù),則f(g(-1))=( )
A.-20 B.-18 C.-15 D.17
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集17講練習(xí)卷(解析版) 題型:解答題
一家商場(chǎng)為了確定營(yíng)銷策略,進(jìn)行了投入促銷費(fèi)用x和商場(chǎng)實(shí)際銷售額y的試驗(yàn),得到如下四組數(shù)據(jù).
投入促銷費(fèi)用x(萬(wàn)元) | 2 | 3 | 5 | 6 |
商場(chǎng)實(shí)際營(yíng)銷額y(萬(wàn)元) | 100 | 200 | 300 | 400 |
(1)在下面的直角坐標(biāo)系中,畫(huà)出上述數(shù)據(jù)的散點(diǎn)圖,并據(jù)此判斷兩個(gè)變量是否具有較好的線性相關(guān)性;
(2)求出x,y之間的回歸直線方程=x+;
(3)若該商場(chǎng)計(jì)劃營(yíng)銷額不低于600萬(wàn)元,則至少要投入多少萬(wàn)元的促銷費(fèi)用?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集15講練習(xí)卷(解析版) 題型:選擇題
以拋物線y2=8x上的任意一點(diǎn)為圓心作圓與直線x+2=0相切,這些圓必過(guò)一定點(diǎn),則這一定點(diǎn)的坐標(biāo)是( )
A.(0,2) B.(2,0)
C.(4,0) D.(0,4)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com