【題目】隨著移動互聯(lián)網的發(fā)展,與餐飲美食相關的手機軟件層出不窮.為調查某款訂餐軟件的商家的服務情況,統(tǒng)計了10次訂餐“送達時間”,得到莖葉圖如下:(時間:分鐘)
(1)請計算“送達時間”的平均數(shù)與方差:
(2)根據(jù)莖葉圖填寫下表:
送達時間 | 35分組以內(包括35分鐘) | 超過35分鐘 |
頻數(shù) | A | B |
頻率 | C | D |
在答題卡上寫出,,,的值;
(3)在(2)的情況下,以頻率代替概率.現(xiàn)有3個客戶應用此軟件訂餐,求出在35分鐘以內(包括35分鐘)收到餐品的人數(shù)的分布列,并求出數(shù)學期望.
科目:高中數(shù)學 來源: 題型:
【題目】光伏發(fā)電是利用太陽能電池及相關設備將太陽光能直接轉化為電能.近幾年在國內出臺的光伏發(fā)電補貼政策的引導下,某地光伏發(fā)電裝機量急劇上漲,如下表:
某位同學分別用兩種模型:①②進行擬合,得到相應的回歸方程并進行殘差分析,殘差圖如下(注:殘差等于):
經過計算得,.
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應該選擇哪個模型?并簡要說明理由.
(2)根據(jù)(1)的判斷結果及表中數(shù)據(jù)建立y關于x的回歸方程,并預測該地區(qū)2020年新增光伏裝機量是多少.(在計算回歸系數(shù)時精確到0.01)
附:歸直線的斜率和截距的最小二乘估計公式分別為:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知點,過點作直線、與圓:和拋物線:都相切.
(1)求拋物線的兩切線的方程;
(2)設拋物線的焦點為,過點的直線與拋物線相交于、兩點,與拋物線的準線交于點(其中點靠近點),且,求與的面積之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,為梯形,,,,,,.
(1)在線段上有一個動點,滿足且平面,求實數(shù)的值;
(2)已知與的交點為,若,且平面,求二面角平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的離心率為,分別是橢圓的左右焦點,點是橢圓上任意一點,且.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)在直線上是否存在點Q,使以為直徑的圓經過坐標原點O,若存在,求出線段的長的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)若是函數(shù)的導函數(shù)的零點,求的單調區(qū)間;
(2)若不等式對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,,E為AB的中點.將沿DE翻折,得到四棱錐.設的中點為M,在翻折過程中,有下列三個命題:
①總有平面;
②線段BM的長為定值;
③存在某個位置,使DE與所成的角為90°.
其中正確的命題是_______.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的左、右焦點分別是,,,是其左右頂點,點是橢圓上任一點,且的周長為6,若面積的最大值為.
(1)求橢圓的方程;
(2)若過點且斜率不為0的直線交橢圓于,兩個不同點,證明:直線與的交點在一條定直線上.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com