(2012•寧城縣模擬)已知函數(shù)f(x)=ax+xlnx的圖象在點(diǎn)x=e(e為自然對(duì)數(shù)的底數(shù))處的切線斜率為3.
(1)求實(shí)數(shù)a的值;
(2)證明:當(dāng)x>1時(shí),
f(x)x-1
>3
恒成立.
分析:(1)求導(dǎo)數(shù),利用函數(shù)f(x)=ax+xlnx的圖象在點(diǎn)x=e(e為自然對(duì)數(shù)的底數(shù))處的切線斜率為3,可得f′(e)=3,從而可求實(shí)數(shù)a的值;
(2)構(gòu)造g(x)=
f(x)
x-1
=
x+xlnx
x-1
,求導(dǎo)函數(shù)可得g′(x)=
x-lnx-2
(x-1)2
,令h(x)=x-lnx-2(x>1),確定h(x)=0在(1,+∞)上存在唯一實(shí)根x0,且滿足x0∈(3,4),進(jìn)而可得g(x)=
x+xlnx
x-1
在(1,x0)上單調(diào)遞減,在(x0,+∞)上單調(diào)遞增,求出最小值,即可得證.
解答:(1)解:求導(dǎo)數(shù)可得f′(x)=a+lnx+1
∵函數(shù)f(x)=ax+xlnx的圖象在點(diǎn)x=e(e為自然對(duì)數(shù)的底數(shù))處的切線斜率為3
∴f′(e)=3,∴a+lne+1=3,∴a=1,-----------------------(3分)
(2)證明:由(1)知,f(x)=x+xlnx,
g(x)=
f(x)
x-1
=
x+xlnx
x-1
,則g′(x)=
x-lnx-2
(x-1)2
,-----------------------(5分)
令h(x)=x-lnx-2(x>1),則h′(x)=1-
1
x
=
x-1
x
>0
,
所以函數(shù)h(x)在(1,+∞)上單調(diào)遞增.…(7分)
因?yàn)閔(3)=1-ln3<0,h(4)=2-2ln2>0,
所以方程h(x)=0在(1,+∞)上存在唯一實(shí)根x0,且滿足x0∈(3,4).
當(dāng)1<x<x0時(shí),h(x)<0,即g'(x)<0,
當(dāng)x>x0時(shí),h(x)>0,即g'(x)>0,…(9分)
所以函數(shù)g(x)=
x+xlnx
x-1
在(1,x0)上單調(diào)遞減,在(x0,+∞)上單調(diào)遞增.
所以[g(x)]min=g(x0)=
x0(1+lnx0)
x0-1
=
x0(1+x0-2)
x0-1
=x0

因?yàn)閤0>3,所以x>1時(shí),
f(x)
x-1
>3
恒成立     …(12分)
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的單調(diào)性與最值,解題時(shí)構(gòu)造函數(shù)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧城縣模擬)已知x,y滿足
y≥0
x-y-1≥0
x+y-4≤0
,則z=2x+y的最小值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧城縣模擬)甲、乙、丙三名同學(xué)按任意次序站成一排,則甲站在兩端的概率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧城縣模擬)不等式選講
已知f(x)=|x|+|x-3|,若不等式f(x)>a-x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧城縣模擬)定義函數(shù)sgn(x)=
1(x≥0)
-1(x<0)
,函數(shù)f(x)=
1-sgn(x)
2
•(2-x-1)+
1+sgn(x)
2
x
.若f(x0)>1,則x0的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧城縣模擬)如圖,ABCD是邊長(zhǎng)為1的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF.
(Ⅰ)求證:AC⊥平面BDE;
(Ⅱ)求點(diǎn)F到平面BDE的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案