已知向量
a
=(2,1),
b
=(-1,x),若(
a
+
b
)與(
a
-
b
)共線,x
=
 
分析:利用向量的坐標(biāo)運算和向量共線定理即可得出.
解答:解:∵
a
+
b
=(1,1+x),
a
-
b
=(3,1-x),(
a
+
b
)∥(
a
-
b
)
,
∴3(1+x)-(1-x)=0,解得x=-
1
2

故答案為:-
1
2
點評:本題考查了向量的坐標(biāo)運算和向量共線定理,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•湖北模擬)已知向量
a
=(-2,1),
b
=(-3,0)
,則
a
b
方向上的投影為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,-1),
b
=(-4,m)
,如果
a
b
,則m=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,1),
b
=(1,k)
,且
a
b
的夾角為銳角,則實數(shù)k的取值范圍是
k>-2且k≠
1
2
k>-2且k≠
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,-1)
,
b
=(-1,m)
,
c
=(-1,2)
,若(
a
+
b
)與
c
夾角為銳角,則m取值范圍是
3
2
,+∞)
3
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,1),
b
=(-1,3)
,若存在向量
c
,使得
a
c
=4,
b
c
=-9
,則向量
c
為( 。
A、(-3,2)
B、(4,3)
C、(3,-2)
D、(2,-5)

查看答案和解析>>

同步練習(xí)冊答案