(2013•牡丹江一模)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.
(Ⅰ)求證:AC是△BDE的外接圓的切線;
(Ⅱ)若AD=2
3
,AE=6
,求EC的長(zhǎng).
分析:(Ⅰ)要證明AC是△BDE的外接圓的切線,故考慮取BD的中點(diǎn)O,只要證明OE⊥AC,結(jié)合∠C=90°,證明BC∥OE即可
(Ⅱ)設(shè)⊙O的半徑為r,則在△AOE中,由OA2=OE2+AE2,可求r,代入可得OA,2OE,Rt△AOE中,可求∠A,∠AOE,進(jìn)而可求∠CBE=∠OBE,在BCE中,通過(guò)EC與BE的關(guān)系可求
解答:證明:(Ⅰ)取BD的中點(diǎn)O,連接OE.
∵BE平分∠ABC,∴∠CBE=∠OBE.又∵OB=OE,∴∠OBE=∠BEO,
∴∠CBE=∠BEO,∴BC∥OE.…(3分)
∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圓的切線.    …(5分)
(Ⅱ)設(shè)⊙O的半徑為r,則在△AOE中,OA2=OE2+AE2,即(r+2
3
)2=r2+62
,
解得r=2
3
,…(7分)
∴OA=2OE,
∴∠A=30°,∠AOE=60°.
∴∠CBE=∠OBE=30°.
∴在Rt△BCE中,可得EC=
1
2
BE=
1
2
×
3
r=
1
2
×
3
×2
3
=3
.                 …(10分)
點(diǎn)評(píng):本題主要考查了切線的判定定理的應(yīng)用,直角三角形基本關(guān)系的應(yīng)用,屬于基本知識(shí)的簡(jiǎn)單綜合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•牡丹江一模)在球O內(nèi)任取一點(diǎn)P,使得P點(diǎn)在球O的內(nèi)接正方體中的概率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•牡丹江一模)復(fù)數(shù) (1+i)z=i( i為虛數(shù)單位),則
.
z
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•牡丹江一模)已知函數(shù)f(x)=
1+1nx
x

(1)若函數(shù)f(x)在區(qū)間(a,a+
1
3
)(a>0)
上存在極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)知果當(dāng)x≥1時(shí),不等式f(x)≥
k
x+1
恒成立,求實(shí)數(shù)k的取值范圍;
(3)求證:[(n+1)!]2>(n+1)en-2+
2
n+1
,這里n∈N*,(n+1)!=1×2×3×…×(n+1),e為自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•牡丹江一模)已知函數(shù)f(x)=xlnx.
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過(guò)點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程;
(Ⅲ)設(shè)函數(shù)g(x)=f(x)-a(x-1),其中a∈R,求函數(shù)g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•牡丹江一模)已知四棱錐P-ABCD的三視圖如圖所示,則四棱錐P-ABCD的四個(gè)側(cè)面中面積最大的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案