如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是線段AE上的動點(diǎn).
(1)試確定點(diǎn)M的位置,使AC∥平面DMF,并說明理由;
(2)在(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.

(1)詳見解析;(2)1:4.

解析試題分析:(1)要使得AC∥平面DMF,需要使得AC平行平面DMF內(nèi)的一條直線.為了找這條直線,需要作一個(gè)過AC而與平面DMF相交的平面.為此,連結(jié)CE,交DF于N,連結(jié)MN,這樣只要AC∥MN即可.因?yàn)镹為線段DF的中點(diǎn),所以只需M是線段AE的中點(diǎn)即可.

(2)一般地,求不規(guī)則的幾何體的體積,可將其割為規(guī)則的幾何體或補(bǔ)為規(guī)則的幾何體.在本題中,可將幾何體ADE-BCF補(bǔ)成三棱柱ADE-B¢CF,如圖.這樣利用柱體和錐體的體積公式即可得其體積之比.

(1)當(dāng)M是線段AE的中點(diǎn)時(shí),AC∥平面DMF.
證明如下:
連結(jié)CE,交DF于N,連結(jié)MN,
由于M、N分別是AE、CE的中點(diǎn),所以MN∥AC,
由于MN平面DMF,又AC平面DMF,
所以AC∥平面DMF. 4分
(2)如圖,將幾何體ADE-BCF補(bǔ)成三棱柱ADE-B¢CF,

三棱柱ADE-B¢CF的體積為,
則幾何體ADE-BCF的體積

三棱錐F-DEM的體積V三棱錐M-DEF,
故兩部分的體積之比為(答14,4,41均可). 12分
考點(diǎn):1、空間線面關(guān)系;2、幾何體的體積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中點(diǎn)O為球心、BD為直徑的球面交PD于點(diǎn)M.
(1)求證:平面ABM平面PCD;
(2)求三棱錐M-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD, .

(1)證明: A1BD // 平面CD1B1;
(2)求三棱柱ABD-A1B1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB是圓O的直徑,點(diǎn)C是弧AB的中點(diǎn),點(diǎn)V是圓O所在平面外一點(diǎn),是AC的中點(diǎn),已知,
(1)求證:AC⊥平面VOD;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在五面體中,已知平面,,,

(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在體積為的正三棱錐中,長為為棱的中點(diǎn),求

(1)異面直線所成角的大小(結(jié)果用反三角函數(shù)值表示);
(2)正三棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AC=BC,點(diǎn)D是AB的中點(diǎn).

(1)求證:BC1∥平面CA1D;
(2)求證:平面CA1D⊥平面AA1B1B;
(3)若底面ABC為邊長為2的正三角形,BB1=求三棱錐B1-A1DC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直角梯形,,沿折疊成三棱錐,當(dāng)三棱錐體積最大時(shí),求此時(shí)三棱錐外接球的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示的多面體中,是菱形,是矩形,,

(1)求證:平;
(2)若,求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案