【題目】如圖,在四棱錐中,平面平面,,,且.


1)過(guò)作截面與線段交于點(diǎn)H,使得平面,試確定點(diǎn)H的位置,并給出證明;

2)在(1)的條件下,若二面角的大小為,試求直線與平面所成角的正弦值.

【答案】1H為線段上靠近點(diǎn)P的五等分點(diǎn),即,證明見解析;(2

【解析】

1連接于點(diǎn).證明,即可證明平面

2,x,y軸的正方向,過(guò)點(diǎn)D作平面的垂線為z軸建立空間直角坐標(biāo)系,求出平面的法向量,利用空間向量的數(shù)量積求解直線與平面所成角的正弦值即可.

1)如圖,連接于點(diǎn)E,

,易知相似于.

,

平面,平面平面,

,

,即H為線段上靠近點(diǎn)P的五等分點(diǎn),即.

2)由,相似于,可得

∵平面平面,且平面平面,∴平面,

為二面角的平面角,∵,∴,

,∴,,

又易知,∴平面,即是平面的法向量,

如圖,以,x,y軸的正方向,過(guò)點(diǎn)D作平面的垂線為z軸建立空間直角坐標(biāo)系,

,,,∴,

,直線與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中,,.

(Ⅰ)若是偶函數(shù),求實(shí)數(shù)的值;

(Ⅱ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)若對(duì)任意,都有恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓周上有個(gè)白點(diǎn),先將其中一個(gè)染為黑色(稱為第一次染色),對(duì)任何正整數(shù),次染色后按逆時(shí)針方向間隔個(gè)點(diǎn)將下個(gè)點(diǎn)染成與原來(lái)顏色相反的顏色(稱為第次染色).

(1)對(duì)給定正整數(shù),是否存在正整數(shù),使次染色后個(gè)點(diǎn)均為白色?

(2)對(duì)給定正整數(shù),是否存在正整數(shù),使次染色后個(gè)點(diǎn)均為黑色?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)的某種產(chǎn)品,如果年返修率不超過(guò)千分之一,則其生產(chǎn)部門當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司2014-2018年的相關(guān)數(shù)據(jù)如下表所示:

年份

2014

2015

2016

2017

2018

年生產(chǎn)臺(tái)數(shù)(萬(wàn)臺(tái))

2

4

5

6

8

該產(chǎn)品的年利潤(rùn)(百萬(wàn)元)

30

40

60

50

70

年返修臺(tái)數(shù)(臺(tái))

19

58

45

71

70

注:

(1)從該公司2014-2018年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),求這3年中至少有2年生產(chǎn)部門考核優(yōu)秀的概率.

(2)利用上表中五年的數(shù)據(jù)求出年利潤(rùn)(百萬(wàn)元)關(guān)于年生產(chǎn)臺(tái)數(shù)(萬(wàn)臺(tái))的回歸直線方程是 ①.現(xiàn)該公司計(jì)劃從2019年開始轉(zhuǎn)型,并決定2019年只生產(chǎn)該產(chǎn)品1萬(wàn)臺(tái),且預(yù)計(jì)2019年可獲利32(百萬(wàn)元);但生產(chǎn)部門發(fā)現(xiàn),若用預(yù)計(jì)的2019年的數(shù)據(jù)與2014-2018年中考核優(yōu)秀年份的數(shù)據(jù)重新建立回歸方程,只有當(dāng)重新估算的的值(精確到0.01),相對(duì)于①中,的值的誤差的絕對(duì)值都不超過(guò)時(shí),2019年該產(chǎn)品返修率才可低于千分之一.若生產(chǎn)部門希望2019年考核優(yōu)秀,能否同意2019年只生產(chǎn)該產(chǎn)品1萬(wàn)臺(tái)?請(qǐng)說(shuō)明理由.

(參考公式:, ,相對(duì)的誤差為.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20203月,各行各業(yè)開始復(fù)工復(fù)產(chǎn),生活逐步恢復(fù)常態(tài),某物流公司承擔(dān)從甲地到乙地的蔬菜運(yùn)輸業(yè)務(wù).已知該公司統(tǒng)計(jì)了往年同期200天內(nèi)每天配送的蔬菜量X40X200,單位:件.注:蔬菜全部用統(tǒng)一規(guī)格的包裝箱包裝),并分組統(tǒng)計(jì)得到表格如表:

蔬菜量X

[4080

[80,120

[120,160

[160200

天數(shù)

25

50

100

25

若將頻率視為概率,試解答如下問(wèn)題:

1)該物流公司負(fù)責(zé)人決定隨機(jī)抽出3天的數(shù)據(jù)來(lái)分析配送的蔬菜量的情況,求這3天配送的蔬菜量中至多有2天小于120件的概率;

2)該物流公司擬一次性租賃一批貨車專門運(yùn)營(yíng)從甲地到乙地的蔬菜運(yùn)輸.已知一輛貨車每天只能運(yùn)營(yíng)一趟,每輛貨車每趟最多可裝載40件,滿載才發(fā)車,否則不發(fā)車.若發(fā)車,則每輛貨車每趟可獲利2000元;若未發(fā)車,則每輛貨車每天平均虧損400元.為使該物流公司此項(xiàng)業(yè)務(wù)的營(yíng)業(yè)利潤(rùn)最大,該物流公司應(yīng)一次性租賃幾輛貨車?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)、為拋物線上的兩點(diǎn),的中點(diǎn)的縱坐標(biāo)為4,直線的斜率為.

(1)求拋物線的方程;

(2)已知點(diǎn)、為拋物線(除原點(diǎn)外)上的不同兩點(diǎn),直線、的斜率分別為,且滿足,記拋物線、處的切線交于點(diǎn),若點(diǎn)、的中點(diǎn)的縱坐標(biāo)為8,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)設(shè),求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)在其定義域內(nèi)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)的十進(jìn)制寫法中最后一個(gè)非零數(shù)字證明:0·…是無(wú)理數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】港珠澳大橋是中國(guó)建設(shè)史上里程最長(zhǎng),投資最多,難度最大的跨海橋梁項(xiàng)目,大橋建設(shè)需要許多橋梁構(gòu)件。從某企業(yè)生產(chǎn)的橋梁構(gòu)件中抽取件,測(cè)量這些橋梁構(gòu)件的質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間,內(nèi)的頻率之比為.

(1)求這些橋梁構(gòu)件質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;

(2)用分層抽樣的方法在區(qū)間內(nèi)抽取一個(gè)容量為的樣本,將該樣本看成一個(gè)總體,從中任意抽取件橋梁構(gòu)件,求這件橋梁構(gòu)件都在區(qū)間內(nèi)的概率

查看答案和解析>>

同步練習(xí)冊(cè)答案