在m(m≥2)個不同數(shù)的排列P1P2…Pn中,若1≤i<j≤m時Pi>Pj(即前面某數(shù)大于后面某數(shù)),則稱Pi與Pj構(gòu)成一個逆序.一個排列的全部逆序的總數(shù)稱為該排列的逆序數(shù).記排列(n+1)n(n-1)…321的逆序數(shù)為an,如排列21的逆序數(shù)a1=1,排列321的逆序數(shù)a3=6.
(Ⅰ)求a4、a5,并寫出an的表達(dá)式;
(Ⅱ)令,證明2n<b1+b2+…+bn<2n+3,n=1,2,….
【答案】分析:(Ⅰ)由排列21的逆序數(shù)a1=1,排列321的逆序數(shù)a2=3,排列4321的逆序數(shù)a3=6得a4=4+3+2+1=10,a5=5+4+3+2+1=15,找出規(guī)律得到an即可;
(Ⅱ)利用基本不等式的到b1+b2+…+bn>2n;根據(jù),…,列舉出各項得到b1+b2+…+bn<2n+3,即得證.
解答:解:(Ⅰ)由排列21的逆序數(shù)a1=1,排列321的逆序數(shù)a2=3,排列4321的逆序數(shù)a3=6,得a4=4+3+2+1=10,a5=5+4+3+2+1=15,所以an=n+(n-1)+…+2+1=;
(Ⅱ)因為,…,
所以b1+b2+…+bn>2n.
又因為,…,
所以b1+b2+…+bn=2n+2[()+()+…+()]=
綜上,2n<b1+b2+bn<2n+3,n=1,2,…
點評:考查學(xué)生會利用數(shù)列求和的方法證明不等式成立,會利用基本不等式求函數(shù)的最小值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在m(m≥2)個不同數(shù)的排列P1P2…Pn中,若1≤i<j≤m時Pi>Pj(即前面某數(shù)大于后面某數(shù)),則稱Pi與Pj構(gòu)成一個逆序.一個排列的全部逆序的總數(shù)稱為該排列的逆序數(shù).記排列(n+1)n(n-1)…321的逆序數(shù)為an,如排列21的逆序數(shù)a1=1,排列321的逆序數(shù)a3=6.
(Ⅰ)求a4、a5,并寫出an的表達(dá)式;
(Ⅱ)令bn=
an
an+1
+
an+1
an
,證明2n<b1+b2+…+bn<2n+3,n=1,2,….

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(06年湖南卷文)(14分)

在m(m≥2)個不同數(shù)的排列P1P2…Pn中,若1≤i<j≤m時Pi>Pj(即前面某數(shù)大于后面某數(shù)),則稱Pi與Pj構(gòu)成一個逆序. 一個排列的全部逆序的總數(shù)稱為該排列的逆序數(shù). 記排列的逆序數(shù)為an,如排列21的逆序數(shù),排列321的逆序數(shù).

(Ⅰ)求a4、a5,并寫出an的表達(dá)式;

(Ⅱ)令,證明,n=1,2,….

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

mm≥2)個不同數(shù)的排列P1P2Pn中,若1≤ijmPiPj(即前面某數(shù)大于后面某數(shù)),則稱PiPj構(gòu)成一個逆序. 一個排列的全部逆序的總數(shù)稱為該排列的逆序數(shù). 記排列的逆序數(shù)為an,如排列21的逆序數(shù),排列321的逆序數(shù).

(Ⅰ)求a4、a5,并寫出an的表達(dá)式;

(Ⅱ)令,證明,n=1,2,….

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南省高考真題 題型:解答題

在m(m≥2)個不同數(shù)的排列P1P2…Pn中,若1≤i<j≤m時Pi>Pj(即前面某數(shù)大于后面某數(shù)),則稱Pi與Pj構(gòu)成一個逆序,一個排列的全部逆序的總數(shù)稱為該排列的逆序數(shù)。記排列(n+1)n(n-1)…321的逆序數(shù)為an,如排列21的逆序數(shù)a1=1,排列321的逆序數(shù)a3=6。
(1)求a4、a5,并寫出an的表達(dá)式;
(2)令,證明2n<b1+b2+…+bn<2n+3,n=1,2,…。

查看答案和解析>>

同步練習(xí)冊答案