已知函數(shù)f(x)=x2+bx+c(其中b,c為實(shí)常數(shù)).
(Ⅰ)若b>2,且y=f(sinx)(x∈R)的最大值為5,最小值為-1,求函數(shù)y=f(x)的解析式;
(Ⅱ)是否存在這樣的函數(shù)y=f(x),使得{y|y=x2+bx+c,-1≤x≤0}=[-1,0]?若存在,求出函數(shù)y=f(x)的解析式;若不存在,請(qǐng)說(shuō)明理由.
分析:(Ⅰ)問(wèn)題轉(zhuǎn)化為二次函數(shù)y=x2+bx+c在給定區(qū)間[-1,1]上的最值問(wèn)題,即要判斷函數(shù)在[-1,1]上的單調(diào)性,繼而得到函數(shù)y=f(x)的解析式;
(Ⅱ)問(wèn)題轉(zhuǎn)化為二次函數(shù)y=x2+bx+c的定義域與值域?yàn)閇-1,0],通過(guò)對(duì)參數(shù)b分類(lèi)討論,得到關(guān)于b與c的關(guān)系式,繼而得到函數(shù)y=f(x)的解析式.
解答:解:(Ⅰ)由條件知f(x)=x2+bx+c,x∈[-1,1]的最大值為5,最小值為-1
而b>2,則對(duì)稱(chēng)軸x=-
b
2
<-1

f(-1)=-1
f(1)=5
,即
c-b+1=-1
b+c+1=5
,解得
c=1
b=3

則f(x)=x2+3x+1.
(Ⅱ)①若b≥2,則x=-
b
2
≤-1
,
c-b+1=-1
c=0
,解得
c=0
b=2
,此時(shí)f(x)=x2+2x
②若b≤0,則x=-
b
2
≥0
,
c-b+1=0
c=-1
,解得
c=-1
b=0
,此時(shí)f(x)=x2-1
③若0<b≤1,則x=-
b
2
∈[-
1
2
,0)
,
c-b+1=0
c-
b2
4
=-1
,解得
c=-1
b=0
(舍)或
c=3
b=4
(舍),
此時(shí)不存在函數(shù)f(x)
④若1<b<2,則x=-
b
2
∈(-1,-
1
2
)
,
c=0
c-
b2
4
=-1
,解得
c=0
b=2
(舍)或
c=0
b=-2
(舍),
此時(shí)不存在函數(shù)f(x)
綜上所述存在函數(shù)f(x)=x2-1和f(x)=x2+2x滿(mǎn)足條件.
點(diǎn)評(píng):本題以二次函數(shù)為載體,考查函數(shù)與方程的綜合運(yùn)用,考查二次函數(shù)解析式的常用解法及分類(lèi)討論,轉(zhuǎn)化思想,充分利用二次函數(shù)的性質(zhì)是解題的關(guān)鍵
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線(xiàn)y=f(x)在與x軸交點(diǎn)處的切線(xiàn)為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線(xiàn)y=f(x)在與x軸交點(diǎn)處的切線(xiàn)為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案