等差數(shù)列{an}中,a3=3,a1+a4=5.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=,求數(shù)列{bn}的前n項(xiàng)和Sn.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,其前項(xiàng)和為,滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)(為正整數(shù)),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對任意n∈N*,Sn是a和an的等差中項(xiàng).
(1)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)證明<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}是等差數(shù)列,且a2=-1,a5=5.
(1)求{an}的通項(xiàng)an.
(2)求{an}前n項(xiàng)和Sn的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是等差數(shù)列,且.
(1)求數(shù)列的通項(xiàng)公式; (2)令,求數(shù)列前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知公差不為零的等差數(shù)列{an}的前4項(xiàng)和為10,且a2,a3,a7成等比數(shù)列.
(1)求通項(xiàng)公式an;
(2)設(shè)bn=2an,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{an}的前n項(xiàng)和為Sn=2an-2,數(shù)列{bn}是首項(xiàng)為a1,公差不為零的等差數(shù)列,且b1,b3,b11成等比數(shù)列.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求證: <5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an}滿足an+1=2an+n2-4n+1.
(1)若a1=3,求證:存在(a,b,c為常數(shù)),使數(shù)列{an+f(n)}是等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(2)若an是一個(gè)等差數(shù)列{bn}的前n項(xiàng)和,求首項(xiàng)a1的值與數(shù)列{bn}的通項(xiàng)公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com