某工廠生產(chǎn)甲、乙兩種產(chǎn)品,甲產(chǎn)品的一等品率為80%,二等品率為20%;乙產(chǎn)品的一等品率為90%,二等品率為10%.生產(chǎn)1件甲產(chǎn)品,若是一等品則獲得利潤4萬元,若是二等品則虧損1萬元;生產(chǎn)1件乙產(chǎn)品,若是一等品則獲得利潤6萬元,若是二等品則虧損2萬元.設(shè)生產(chǎn)各種產(chǎn)品相互獨立.
(1)記X(單位:萬元)為生產(chǎn)1件甲產(chǎn)品和1件乙產(chǎn)品可獲得的總利潤,求X的分布列;
(2)求生產(chǎn)4件甲產(chǎn)品所獲得的利潤不少于10萬元的概率.
分析:(1)根據(jù)題意做出變量的可能取值是10,5,2,-3,結(jié)合變量對應(yīng)的事件和相互獨立事件同時發(fā)生的概率,寫出變量的概率和分布列.
(2)設(shè)出生產(chǎn)的4件甲產(chǎn)品中一等品有n件,則二等品有4-n件,根據(jù)生產(chǎn)4件甲產(chǎn)品所獲得的利潤不少于10萬元,列出關(guān)于n的不等式,解不等式,根據(jù)這個數(shù)字屬于整數(shù),得到結(jié)果,根據(jù)獨立重復(fù)試驗寫出概率.
解答:解:(1)由題設(shè)知,X的可能取值為10,5,2,-3,且
P(X=10)=0.8×0.9=0.72,P(X=5)=0.2×0.9=0.18,
P(X=2)=0.8×0.1=0.08,P(X=-3)=0.2×0.1=0.02.
∴X的分布列為:
精英家教網(wǎng)
(2)設(shè)生產(chǎn)的4件甲產(chǎn)品中一等品有n件,則二等品有4-n件.
由題設(shè)知4n-(4-n)≥10,
解得n≥
14
5
,
又n∈N,得n=3,或n=4.
所求概率為P=C43×0.83×0.2+0.84=0.8192
答:生產(chǎn)4件甲產(chǎn)品所獲得的利潤不少于10萬元的概率為0.8192.
點評:本題考查離散型隨機(jī)變量的分布列和期望,考查相互獨立事件同時發(fā)生的概率,考查獨立重復(fù)試驗的概率公式,考查互斥事件的概率,是一個基礎(chǔ)題,這種題目可以作為高考題的解答題目出現(xiàn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

18、某工廠生產(chǎn)甲、乙兩種產(chǎn)品,每種產(chǎn)品都是經(jīng)過第一道和第二道工序加工而成,兩道工序的加工結(jié)果相互獨立,每道工序的加工結(jié)果均有A、B兩個等級,對每種產(chǎn)品,兩道工序的加工結(jié)果都為A級時,產(chǎn)品為一等品,其余均為二等品
(1)已知甲、乙兩種產(chǎn)品每一道工序的加工結(jié)果為A級的概率如表一所示,分別求生產(chǎn)的甲、乙產(chǎn)品為一等品的概率P、P
(2)已知一件產(chǎn)品的利潤如表二所示,用ξ、η分別表示一件甲、乙產(chǎn)品的利潤,在(1)的條件下,分別求甲、乙兩種產(chǎn)品利潤的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)甲、乙兩種產(chǎn)品.已知生產(chǎn)一噸甲產(chǎn)品、一噸乙產(chǎn)品所需要的煤、電以及產(chǎn)值如表所示;
用煤(噸) 用電(千瓦) 產(chǎn)值(萬元)
生產(chǎn)一噸甲種產(chǎn)品 7 2 8
生產(chǎn)一噸乙種產(chǎn)品 3 5 11
又知道國家每天分配給該廠的煤和電力有限制,每天供煤至多56噸,供電至多45千瓦.問該廠如何安排生產(chǎn),才能使該廠日產(chǎn)值最大?最大的產(chǎn)值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)甲、乙兩種產(chǎn)品,這兩種產(chǎn)品每千克的產(chǎn)值分別為600元和400元,已知每生產(chǎn)1千克甲產(chǎn)品需要A種原料4千克,B種原料2千克;每生產(chǎn)1千克乙產(chǎn)品需要A種原料2千克,B種原料3千克.但該廠現(xiàn)有A種原料100千克,B種原料120千克.問如何安排生產(chǎn)可以取得最大產(chǎn)值,并求出最大產(chǎn)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品所需電力4千瓦時、勞力6個,獲得利潤5百元;生產(chǎn)每噸乙產(chǎn)品所需電力5千瓦時、勞力4個,獲得利潤4百元;每天資源限額(最大供應(yīng)量)分別為電力202千瓦時、勞動力240個.
問:每天生產(chǎn)甲、乙兩種產(chǎn)品各多少噸,獲得利潤總額最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案