已知棱長(zhǎng)為的正方體,則以該正方體各個(gè)面的中心為頂點(diǎn)的多面體的體積為________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專(zhuān)題體系通關(guān)訓(xùn)練填空題押題練D組練習(xí)卷(解析版) 題型:填空題
對(duì)于任意x∈[1,2],都有(ax+1)2≤4成立,則實(shí)數(shù)a的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專(zhuān)題體系通關(guān)訓(xùn)練填空題押題練A組練習(xí)卷(解析版) 題型:填空題
已知sin =,則sin=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專(zhuān)題體系通關(guān)訓(xùn)練倒數(shù)第9天練習(xí)卷(解析版) 題型:填空題
設(shè)a>0,a≠1,函數(shù)f(x)=ax2+x+1有最大值,則不等式loga(x-1)>0的解集為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專(zhuān)題體系通關(guān)訓(xùn)練倒數(shù)第8天練習(xí)卷(解析版) 題型:解答題
如圖a,在直角梯形ABCD中,AB⊥AD,AD∥BC,F為AD的中點(diǎn),E在BC上,且EF∥AB.已知AB=AD=CE=2,沿線EF把四邊形CDFE折起如圖b,使平面CDFE⊥平面ABEF.
(1)求證:AB⊥平面BCE;
(2)求三棱錐C ?ADE體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專(zhuān)題體系通關(guān)訓(xùn)練倒數(shù)第8天練習(xí)卷(解析版) 題型:填空題
如圖,在多面體ABCDEF中,已知ABCD是邊長(zhǎng)為1的正方形,且△ADE、△BCF均為正三角形,EF∥AB,EF=2,則該多面體的體積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專(zhuān)題體系通關(guān)訓(xùn)練倒數(shù)第7天練習(xí)卷(解析版) 題型:填空題
如果數(shù)列a1,,,…,,…是首項(xiàng)為1,公比為-的等比數(shù)列,則a5等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專(zhuān)題體系通關(guān)訓(xùn)練倒數(shù)第6天練習(xí)卷(解析版) 題型:填空題
若函數(shù)f(x)=sin(x+φ)(0<φ<π)是偶函數(shù),則cos =________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專(zhuān)題體系通關(guān)訓(xùn)練倒數(shù)第2天練習(xí)卷(解析版) 題型:解答題
已知數(shù)列{an}滿足:a1=,an+1= (n∈N*).
(1)求a2,a3的值;
(2)證明:不等式0<an<an+1對(duì)于任意n∈N*都成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com