在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.

(1)求異面直線B1C1與AC所成角的大。
(2)若該直三棱柱ABC-A1B1C1的體積為,求點(diǎn)A到平面A1BC的距離.

(1)45°;(2).

解析試題分析:(1)求異面直線所成的角,關(guān)鍵是作出這兩條直線所成的角,作法是利用平移思想(即作平行線),當(dāng)然我們要充分利用圖中已有的平行關(guān)系作圖,如本題中有,就不需要另外作平行線了,還要注意的是異面直線所成的角不大于90°;(2)求點(diǎn)到平面的距離,一般要作出垂線段,求垂線段的長(zhǎng),即過(guò)點(diǎn)作平面的垂線,首先觀察尋找原有圖形中的垂直關(guān)系,發(fā)現(xiàn)可證平面⊥平面,因此我們只要在平面內(nèi)作,垂足為,則可證為所要求的垂線段,其長(zhǎng)即為要求的距離.另外由于點(diǎn),平面所在的三棱錐的體積很容易求得,故也可用體積法求解.
試題解析:(1)∵BC∥B1C1,
∴∠ACB為異面直線B1C1與AC所成角(或它的補(bǔ)角),(2分)
∵∠ABC=90°,AB=BC=1,
∴∠ACB=45°,
∴異面直線B1C1與AC所成角為45°.(4分)
(2)∵,三棱柱的體積.
,(2分)
⊥平面1,∴,
設(shè)點(diǎn)A到平面A1BC的距離為h,(4分)
三棱錐A1-ABC的體積V==三棱錐A-A1BC的體積V=,(6分)
.(8分)
考點(diǎn):(1)異面直線所成的角;(2)點(diǎn)到平面的距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形是正方形,平面,,,分別為,的中點(diǎn).

(1)求證:平面
(2)求平面與平面所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).

(1)求證:∥平面
(2)求證:AC⊥BC1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,

(Ⅰ)求證:
(Ⅱ)設(shè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

右圖為一組合體,其底面為正方形,平面,且

(Ⅰ)求證:平面
(Ⅱ)求四棱錐的體積;
(Ⅲ)求該組合體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱錐中,,的中點(diǎn),的中點(diǎn),且為正三角形.

(1)求證:平面;
(2)若,,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖四棱錐中,底面是平行四邊形,平面,垂足為,上且,的中點(diǎn),四面體的體積為.

(1)求二面角的正切值;
(2)求直線到平面所成角的正弦值;
(3)在棱上是否存在一點(diǎn),使異面直線所成的角為,若存在,確定點(diǎn)的位置,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖長(zhǎng)方體中,底面是正方形,的中點(diǎn),是棱上任意一點(diǎn).

⑴求證:;
⑵如果,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直三棱柱中,,為的中點(diǎn).

(1)求證:∥平面;
(2)求證:平面

查看答案和解析>>

同步練習(xí)冊(cè)答案