已知函數(shù),

(1)在如圖給定的直角坐標(biāo)系內(nèi)畫(huà)出的圖象;
(2)寫(xiě)出的單調(diào)遞增區(qū)間.

(1)略; (2)。

解析試題分析:(1)函數(shù)的圖象如圖所示:
             6分
(2)觀察圖象可知,的單調(diào)遞增區(qū)間為。        12分
考點(diǎn):本題主要考查分段函數(shù)的概念及其圖象,函數(shù)的單調(diào)性。
點(diǎn)評(píng):簡(jiǎn)單題,確定函數(shù)的單調(diào)區(qū)間,往往借助于函數(shù)的圖象觀察而得到。畫(huà)出函數(shù)圖象是關(guān)鍵。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),其中為正實(shí)數(shù).
(1)當(dāng)時(shí),求的極值點(diǎn);
(2)若上的單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間
(2)函數(shù)的圖象在處切線的斜率為若函數(shù)在區(qū)間(1,3)上不是單調(diào)函數(shù),求m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是定義在上的函數(shù),當(dāng),且時(shí),有
(1)證明是奇函數(shù);
(2)當(dāng)時(shí),(a為實(shí)數(shù)). 則當(dāng)時(shí),求的解析式;
(3)在(2)的條件下,當(dāng)時(shí),試判斷上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,函數(shù)
(1)若,寫(xiě)出函數(shù)的單調(diào)遞增區(qū)間(不必證明);
(2)若,當(dāng)時(shí),求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)
(1)求,并求數(shù)列的通項(xiàng)公式.   
(2)已知函數(shù)上為減函數(shù),設(shè)數(shù)列的前的和為,
求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(I)討論的單調(diào)性;
(II)若有兩個(gè)極值點(diǎn),記過(guò)點(diǎn)的直線的斜率為,問(wèn):是否存在,使得若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若,,求證:;
(2)若實(shí)數(shù)滿足.試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)作出函數(shù)的圖像,并根據(jù)圖像寫(xiě)出函數(shù)的單調(diào)區(qū)間;以及在各單調(diào)區(qū)間上的增減性.
(Ⅱ)求函數(shù)當(dāng)時(shí)的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案